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We briefly review how exact chiral symmetry is realised on the lattice, in particular how chiral fermions are

implemented in the context of lattice QCD. We discuss how the theory can be formulated in five dimensions and

this provides a theoretical framework within which one can compare algorithmic alternatives for simulating light

chiral fermions in QCD on the lattice.

1. IN THE FLATLAND

1.1. Lattice formulation of QCD

Quantumchromodynamics (QCD) is formally
described by the Lagrange density

LQCD = ψ̄(i/D−mq)ψ −
1

4
GµνG

µν

where ψ̄, ψ describe the fermionic degrees of free-
dom of the quarks, mq the bare quark mass, /D the
Dirac operator and Gµν is the gauge field tensor.
At this point the quantum field theory associated
with the Lagrange density is mathematically not
well defined. To make it meaningful it has to
be regularised and renormalised. One particular
(non-perturbative) regularisation is provided by
the lattice: Euclidean space-time is discretised on
a hypercubic lattice with lattice spacing a. The
fermionic degrees of freedom are defined only at
the lattice sites, derivatives become finite differ-
ences and integrals become sums. The gauge po-
tentials Aµ in Gµν become link matrices Uµ ∈
SU(3) living on the links between the lattice sites.
With this non-perturbative, gauge invariant reg-
ularisation it is possible to define the partition
function

Z =

∫

(

DUDψDψ
)

e−S[U ;ψ,ψ]

where S[U ;ψ, ψ] is now the Euclidean QCD lat-
tice action associated with the Lagrangian above.
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The partition function describes a mathemati-
cally well defined theory that can be used to study
(numerically) the low energy physics of QCD. In
order to describe continuum physics one has to
renormalise the theory and remove the lattice
regulator: this is achieved by taking the lattice
spacing a → 0 while keeping physical quantities
fixed. Poincaré symmetries are restored automat-
ically in the continuum limit, but the naive dis-
cretisation of the Dirac operator introduces ad-
ditional unphysical fermion excitations, so-called
doublers, which however can be eliminated at the
expense of explicitly breaking chiral symmetry on
the lattice at mq = 0. As a consequence the
restoration of chiral symmetry in the continuum
requires a fine tuning of the bare quark mass to
its critical value.

1.2. On-shell chiral symmetry

It is possible to have chiral symmetry on the
lattice without doublers if one only insists that
the symmetry holds on-shell. Such an on-shell
chiral symmetry transformation should be of the
form [1]

ψ → eiαγ5(1−aD)ψ; ψ → ψeiα(1−aD)γ5

and the Dirac operator D on the lattice must be
invariant:

D → eiα(1−aD)γ5Deiαγ5(1−aD) = D.

For an infinitesimal transformation this implies
that

(1 − aD)γ5D +Dγ5(1 − aD) = 0

1
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which is the Ginsparg-Wilson (GW) relation [2]

γ5D +Dγ5 = 2aDγ5D.

One can find a solution DGW of the GW relation
as follows. Let the lattice Dirac operator be γ5-
hermitian, D†

GW = γ5DGWγ5. Then the operator

aDGW =
1

2
(1 + γ5γ̂5)

with γ̂†5 = γ̂5 satisfies the GW relation if γ̂2
5 =

1. Furthermore it must have the correct naive
continuum limit DGW → /∂ when a→ 0, i.e.,

γ̂5 = γ5(2a/∂ − 1) +O(a2).

Both conditions are satisfied if we define

γ̂5 =
Hw

√

H†
wHw

= sgn [Hw]

where the kernel operatorHw ≡ γ5(Dw−1) is the
hermitian Wilson Dirac operator with its nega-
tive mass −1 at the lattice cut-off. The resulting
massless overlap Dirac operator [3,4] eventually
reads

DGW =
1

2
(1 + γ5 sgn [Hw])

and a bare quark mass µ can be introduced by
defining

D(µ) =
(

1 −
µ

2

)

DGW + µ.

As a consequence of the exact lattice chiral
symmetry the operator has exact zero modes with
exact chirality and hence fulfils an exact index
theorem [5]. There is no mixing of four-fermion
operators in different chiral representations, no
additive mass renormalisation and hence no tun-
ing of the bare quark mass [6].

1.3. Approximations and representations

The sign-function above is a matrix function of
the sparse, but huge kernel operator and hence
it can not be computed directly. Instead one em-
ploys an approximation of the sign-function which
in practice can be evaluated by iterative applica-
tions of the matrix.

The explicit construction of the overlap op-
erator then allows for three different variations.

Firstly, one can choose different kernel operators
– here the only requirements are that the ker-
nel has the correct continuum limit and enjoys
γ5-hermiticity. Obviously the Wilson Dirac op-
erator used above is a straightforward choice but
there are certainly other choices available. Sec-
ondly, one can use different approximations to
the sign function, e.g. Chebyshev’s polynomial
approximations or the rational approximations
by Zolotarev or Higham. And thirdly, one can
choose a certain representation of the (rational)
approximation, e.g. a continued fraction, a partial
fraction or a (Euclidean) Cayley transform repre-
sentation. For the overlap operator the choice
of the representation is just a practical one and
the partial fraction representation is in fact the
most convenient choice. However, when we as-
cent into five dimensions, we shall see below that
the choice of the representation has crucial conse-
quences since the representation determines the
explicit form and structure of the correspond-
ing five-dimensional (5D) chiral fermion opera-
tor. More precisely, each of the above mentioned
four-dimensional (4D) representations leads to a
completely different class of 5D operators with
completely different symmetry and transforma-
tion properties.

2. INTO FIVE DIMENSIONS

Let us consider a rational approximation to
the sign-function of the hermitian operator H ,

sgn(H) ≃ Rn,m(H) = Pn(H)
Qm(H) , where n and m de-

note the order of the numerator and denominator
polynomial, respectively. The inverse of H and
hence the denominator polynomial is in general
not explicitly available, but only through some
iterative Krylov space procedure. The key to a
practical evaluation of Rn,m(H) is then provided
by its partial fraction decomposition

R2n+1,2n(H) = x

(

c0 +

n
∑

k=1

ck
H2 + qk

)

which can be obtained from the rational function
by matching poles and residues. The partial frac-
tion can now be evaluated by using multi-shift
linear system solvers which calculate all the terms
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H2 + qk at one fell swoop. However, since all the
physics requires the inverse of D(µ), e.g. for the
calculation of propagators or forces in the course
of a molecular dynamics evolution, this leads to
a two level nested linear system solution, i.e. a
complicated nested Krylov space procedure. It
turns out that this can be avoided by introduc-
ing a tower of auxiliary fields living in a fictitious
fifth dimension hence leading to a 5D representa-
tion of the sign-function. As a consequence the
4D nested Krylov space problem reduces to find-
ing a solution in a single 5D Krylov space.

The key to our ascent into five dimensions is
provided by the Schur complement which yields
the detailed connection between the 4D represen-
tations and the corresponding 5D operators.

2.1. Schur complement

Let us consider the block matrix

M =

(

A B
C D

)

where the blocks A,B,C,D represent matrices
acting in 4D and thus M can be regarded as a
matrix acting in 5D. We may block diagonalise
M by a LDU decomposition (Gaussian elimina-
tion) as

M =

(

1 0
CA−1 1

)(

A 0
0 S

)(

1 A−1B
0 1

)

where the bottom right block of the block diag-
onal matrix is the Schur complement S ≡ D −
CA−1B.

The machinery of the Schur complement now
paves the way for two applications. Firstly, from
the LDU decomposition above it is clear that in-
verting the Schur complement S (in other words
the 4D overlap operator) is equivalent to invert-
ing directly the 5D matrix M . This comes about
by noting that the inverse of L is simply

L−1 =

(

1 0
−CA−1 1

)

.

Then considering the solution of the linear system

M

(

φ
ψ

)

=

(

0
χ

)

by using the LDU decomposition, we find that

L−1

(

0
χ

)

=

(

0
χ

)

, U

(

φ
ψ

)

=

(

φ̃
ψ

)

and hence

M

(

φ
ψ

)

=

(

A 0
0 S

)(

φ̃
ψ

)

=

(

0
χ

)

.

So if we are interested in inverting the Schur com-
plement S on some source χ, i.e. ψ = S−1χ, we
can obtain the solution ψ also by inverting di-
rectly the 5D matrix M . The 4D solution is sim-
ply one particular 4D component of the 5D so-
lution vector. Obviously, in this way the nested
inversions in 4D are completely avoided at the
expense of inverting a 5D matrix.

The second application to which the Schur
complement leads the way is the construction of
the effective 4D theory from the 5D one. This
is accomplished by expressing the determinant
of the 5D block matrix M in terms of the de-
terminants of the 4D blocks. By noting that
detU = detL = 1 we derive from the LDU de-
composition

det

(

A B
C D

)

= det(A) det(D − CA−1B).

So on the level of the determinants, and hence
of the effective fermionic action, the 5D operator
M describes the same theory as the 4D operator
represented by the Schur complement, i.e. the 4D
overlap operator.

2.2. Continued fractions

Consider now a 5D matrix of the form

M =









A0 1 0 0
1 A1 1 0
0 1 A2 1
0 0 1 A3









and its LDU decomposition

L =









1 0 0 0
S−1

0 1 0 0
0 S−1

1 1 0
0 0 S−1

2 1









D =









S0 0 0 0
0 S1 0 0
0 0 S2 0
0 0 0 S3
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U =









1 S−1
0 0 0

0 1 S−1
1 0

0 0 1 S−1
2

0 0 0 1









.

where S0 = A0; Sn+ 1
Sn−1

= An. Then the Schur

complement of the matrix is the continued frac-
tion

S3 = A3 −
1

A2 −
1

A1−
1

A0

.

We may now use this representation to linearise
the continued fraction representation of an ap-
proximation to the sign function,

sgn(H) ≃ k0H +
1

k1H + 1

k2H+
. . .+ 1

knH

,

as the Schur complement of the 5D matrix














−knH 1

1
. . .

k2H 1
1 −k1H 1

1 k0H















.

Analogously, one can define a 5D matrix such that
its Schur complement is exactly the 4D overlap
operator where the approximation of the sign-
function is represented as a continued fraction. In
fact, due to the invariance of continued fractions
under equivalence transformations [7,8], we find
that there is a whole class of 5D operators which
all reduce to the same 4D overlap operator.

2.3. Partial fractions

Now consider a 5D matrix of the form

M =













A1 1 0 0 1
1 −B1 0 0 0
0 0 A2 1 1
0 0 1 −B2 0
−1 0 −1 0 R













where Ai = x
pi
, Bi = pix

qi
. As before we can com-

pute its LDU decomposition and find its Schur
complement

R +
p1x

x2 + q1
+

p2x

x2 + q2
,

so we can use this representation to linearise
the partial fraction approximation to the sgn-
function

sgn(H) ≃ H
∑

j

pj
H2 + qj

.

So again, one can define a 5D matrix such that
its Schur complement is exactly the 4D overlap
operator where the approximation of the sign-
function is represented as a partial fraction. In
fact, due to the invariance of partial fractions un-
der certain transformations, we find that there is
a whole class of 5D operators which all reduce to
the same 4D overlap operator.

2.4. Euclidean Cayley transform

Finally consider a 5D matrix of the (transfer
matrix) form

M =









1 −A1 0 0
0 1 −A2 0
0 0 1 −A3

−A0 0 0 C









with its Schur complement C − A3A2A1A0. We
can then use this representation to linearise the
(Euclidean) Cayley transform of the approxima-
tion to the sgn-function,

sgn(H) ≃
1 −

∏

j Tj(H)

1 +
∏

j Tj(H)
,

where Tj(H) = Aj(H)−1 = (ωj − H)/(ωj + H)
and so this corresponds to the standard domain
wall fermion formulation [9,10]. As before, due to
the invariance of the Euclidean Cayley transform
under certain transformations, we find that there
is a whole class of 5D domain wall fermion op-
erators which all reduce to the same 4D overlap
operator.

3. THE VIEW FROM ABOVE

3.1. Panorama view

Let us stop here for a moment and contemplate
what we see from above. We see that each rep-
resentation of the rational approximation to the
sign-function leads to a different 5D Dirac oper-
ator. They all have the same 4D, effective lat-
tice fermion Dirac operator, namely the overlap
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Dirac operator which satisfies the GW relation
and hence guarantees an exact chiral symmetry
on the lattice. We also see that each 5D opera-
tor has different symmetry properties which stem
from the different properties of the individual
representations. Due to this, each 5D operator
has a very different spectrum and condition num-
ber and therefore a very different calculational
behaviour, e.g. when calculating inverses, even
though in 4D all the representations are com-
pletely equivalent.

The fact that there exist 5D formulations of lat-
tice chiral fermions other than the standard do-
main wall formulation naturally raises the ques-
tion about the physical significance of the fifth
dimension. Is it simply a technical tool to han-
dle a complicated 4D operator, or is it physically
meaningful? Domain wall fermions point towards
the latter being true, since they provide a beauti-
ful and compelling mechanism for creating chiral
fermions in 4D. Accepting this it is then natural
to ask what the physical meaning of continued or
partial fraction fermions is.

3.2. Chiral symmetry breaking

Any approximation of the overlap operator will
destroy the exact lattice chiral symmetry. Such
chiral symmetry breaking can be detected by ex-
amining the violation of the Ginsparg-Wilson re-
lation in the chiral limit,

γ5D +Dγ5 − 2aDγ5D = γ5∆

where the r.h.s. is called the Ginsparg-Wilson de-
fect. For an approximate overlap operator of the
form aD = 1

2 (1 + γ5Rn(H)) the defect simply
yields a∆n = 1

2 (1 −Rn(H)2).
Any explicit chiral symmetry breaking mani-

fests itself in terms of the defect ∆ or, to be more
precise, in terms of moments of ∆ in expectation
values of the operators under consideration. For
example the residual quark mass mres in the chi-
ral limit is simply given by a first moment of ∆n

with respect to the pion propagator G,

mres =
〈G†∆nG〉

〈G†G〉
.

Here we only note that the residual quark mass
can be calculated directly in four and five dimen-
sions and provides a way to compare the various

formulations and determine their efficiency in re-
ducing the residual chiral symmetry breaking at
a fixed extent of the fifth dimension [11]

Obviously, for other physical quantities higher
moments might be important and in fact more
relevant in order to quantify the effects from the
explicit chiral symmetry breaking.

3.3. Summary and conclusions

We have a thorough understanding of various
5D formulations of chiral fermions on the lattice.
In five dimensions there are more possibilities to
formulate chiral fermions on the lattice than in
four dimensions. While from a 4D view the for-
mulations are all equivalent, from a 5D view they
look very different. Computationally, better al-
ternatives than the commonly used domain wall
fermions seem to exist.

Finally, for dynamical simulations of QCD with
light chiral sea quarks using Molecular Dynamics
and Hybrid Monte Carlo, it is an open question
whether it is preferable to follow a 5D or a 4D
strategy.
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