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Chapter 1

Introduction

One of the most useful concepts in modern physics is that of symmetries, since this tool
allows one to single out fundamental structures from the rich world of physical phenomena.
Inseparable from the notion of symmetry are the notions of transformation, invariance
and conservation laws. Among the many symmetries, the discrete symmetries like parity
P, charge conjugation C and time reversal T play a fundamental role in quantum field
theory, since they are the ingredients of the famous C'PT-theorem [1], which states that
it is impossible to construct a meaningful C' PT-noninvariant quantum field theory.

Nevertheless in 1957 it was found [2] that both charge conjugation and parity are
drastically violated by the weak interactions, while the product C'P was still believed
to be conserved. However, in 1964 Christenson, Cronin, Fitch and Turlay [3] discovered
C P-violation in the weak two-pion decay of the neutral kaon.

If C'P is conserved one can show that the long- and short-lived neutral kaon, K7,
and Kg, must form C'P eigenstates with quantum numbers CP = —1 and CP = +1,
respectively. Since the two-pion states with zero angular momentum are eigenstates of
C'P with eigenvalue +1, only the short-lived kaon can decay into two pions, while the
long-lived kaon decays predominantely into three pions or semileptonically. Thus the
decay Ky — w7 is a definite sign of C'P-violation in weak interactions. It can take place
if K7, has a small admixture of the C'P-odd eigenstate (C'P-violation in mixing) or if C'P
is violated directly in the decay (C P-violation in the amplitudes).

In the fundamental experiment Christenson et al. found that the long-lived kaon decays
into two pions with a very small branching ratio. The today values of the branching ratios
are given in [4]:

[(Kp = ntr™)

— = (2.03£0.04)-1073, (1.1)
(K7, — 7070
% = (9.14£0.34)- 107", (1.2)

C P-violation is mostly measured by the following two ratios of the K7, to the Kg decay
rate to two pions:

) 2
= - 1_
F(I(S 7T+7T_) |77+ | ? ( 3)
(K7, — 77°) 2
= . 1.4
F(I(S 770770) |7700| ( )



The today values are given in chapter 3.

The present work is intended to outline some aspects of C P-violation in effective field
theories. We will begin with a phenomenological description of C'P-violation in the neutral
kaon system in chapter 2. Chapter 3 gives a very short introduction to the experimental
determination of C'P-violating quantities as a completion to chapter 2. In chapter 4
we will study the mechanisms inducing C'P-violation by means of simple effective field-
theoretical models. Finally, chapter 5 is designated for the investigation of C P-violation
in the effective AS = 1 nonleptonic weak interaction introduced by Kambor, Missimer

and Wyler [5].



Chapter 2

Phenomenology of C'P-violation in
the neutral kaon system

In this chapter we will outline the basics of the phenomenological description of the neu-
tral kaon system. We will give an overview of a set of phenomenological parameters that
allows one to parametrize C' P-violation both in mixing and in the amplitudes. The reader
is recommended to consult the many reviews on this subject, e.g. [6], [7], [8], for comple-
mentary information. Then we will discuss the possibility of absorbing arbitrary phases
in the definition of the kaons and its consequences. Finally we will formulate the concept
of the mass matrix in field theoretical terms.

2.1 Phenomenology of K — K’ mixing

The neutral K-mesons are produced in strong reactions, for example 7=p — K°A or
™+tp — K° K*p, and are stable eigenstates of strangeness with eigenvalues +1, if the weak
interaction is absent. Therefore one always works with these states as far as the strong
interactions are concerned. Furthermore K° and K" possess a definite third isospin-
component I3 = +1/2 and transform as pseudoscalar particles. We choose the phase of
the C'P-transformation in the following way:

CP|IK% = —[K", (2.1)
CPIEY) = —|K%, (2.2)

and we can easily obtain the eigenstates K; and Ky of the C' P-operator with eigenvalues
+1 and —1, respectively:
- 1 -0 -0 - -
|K)) = _2(|1< )= IK)) = Pl = 4|k, (2.3)

|Ky) = %(|KO>+|FO>) S CP|Ky) = —|Ky). (2.4)

In terms of K©, K -fields we have the relations

5

(CPYK°(z)(CP) = —K°(z,—7), (2.5)
(CP)K (z)(CP)! = —K°,-7), (2.6)



where the C'P-invariance of the vacuum is assumed, and the hermitian combinations

. T, .0 ==0
K, = —(K°'-K"), 2.7

1 —0
Ky, = —(K'4+K 2.8
2= KK (28)

transform as

(CP)K,(CP)! = +K, (2.9)
(CP)K,(CP)t = —K,. (2.10)

However, in the presence of weak interactions, the particles become unstable and ex-
perimentally it is found that K°-decay occurs with two different lifetimes [4]

T(Ks—2r) = 0.9-107"sec,
(K, —3m) = 0.5-10 %sec.

Thus the K%s produced by strong interactions seem to be two different particles, K7, and
Kg, the long and the short lived kaon, respectively, when we study its weak decays. These
states are linear superpositions of the strangeness eigenstates K9 and K" and they obey
the exponential time dependence law

|KYL> — e_i/\LTlf(L> and |I(s> — e_i/\ST|I(5> , (2.11)

where 7 is the proper time of the particle. Since the weak interaction does not conserve
strangeness, it can induce K° — K transitions and thus we have to consider the K0 — K-
system as a whole. A suitable formalism for studying the decay of a many particle state
system is the one evolved by Wigner and Weisskopf [9]. Their concept leads to the result
that the decay of a many state system is governed by an effective Schrodinger equation
(see appendix A)
J

1—1 = M2 2.12
where 9 is an arbitrary state in the K9 — K" basis and M = M — %F is the non-hermitian
mass matrix. Its hermitian parts are given by

1 My, M
_ H — 11 12
M = 5(M+ M) ( My My ) : (2.13)
Iy T
=i{M-Mh= [ 2.14
i ) (le L'y (2.14)

In (2.13), (2.14) and in the following the indices 1, 2 stand for K" and FO, respectively.
From C'PT" invariance of the weak Hamiltonian, Hys, one can easily derive

M]] = MQQ and F]] = FQQ . (215)

We assume C PT-invariance in all of our considerations, since all local quantum field
theories must obey C'PT symmetry [1]. From the hermiticity of M and T" one has



Mll = Mll and Fll = Fllv (216)
M12 = Mgl and Flg = F—Ql (217)

This leads to the following general form of the mass matrix:

My Mg — 119
M= i— 2 . 2.18
( My — 5012 M ) ( )

The eigenvalues of M are given by

i
Ar,s = Mr.s — §FL,S:M11:|:Q7 Q= VM- My, (2.19)
where the sign of () is defined by the condition
Al'=1p —-1's=—4Im@Q@ <0 = Im@ >0. (220)

The real and imaginary part of A7, and Ag determine the masses and the decay width of
the long and the short lived kaon, respectively. Therefore we obtain the mass difference
from

AM = M;, — Mg = 2Re@. (2.21)

Denoting the K7, - eigenstate of M in the K9 — K _basis with (1,7) we have

KL ﬁ (1K) +7[K%) | (2.22)
1K5) = e (1K) 1) (2.2

7 is the complex number

~ Q M21
— - : 2.24
T= My~ Mg (224)

where we have fixed the sign of 7 through (2.20). Writing

=0 VM= My

= L= 2.25
’ I+7  VMiz+vVMn (2.25)
we can express the eigenstates in terms of C'P eigenstates Ky, Ky:
1
|KL) ——= ([K3) + p| K1) (2.26)
V1 pl?
1
Ks) = —— (1K1 + plK2)) - (2.27)
V1 pl?

Note, that we have chosen the arbitrary relative phase of |[K7,) and |Kg) in (2.22), (2.23)
and (2.26), (2.27) such that

2Rep

— > 0.
Vitipl? ~

8

<I§75|I(L> = (2.28)



p is a mixing parameter, which gives the amount of Kj-admixture to Ky, and K3 to
Kg, respectively, i.e. the amount of C P-violation in mixing. This admixture is in fact
responsible for C'P-violation, since the Ky and Kg states are no longer orthogonal and
the K1, can now decay into two pions via the K state.

We can consider now the consequences of the C P-invariance of a theory, in particular
its Hamiltonian,

(CPYH(CP)' =M, (2.29)

for the mass matrix. In particular, from (A.27) and (A.28), it follows that the off-diagonal
matrix elements are equal,

Mg = Moy (2.30)
Therefore, My3 and I'y5 are real according to (2.16), and one has

r
argjw—lf2 = O0mod (2.31)

and thus 7 = 1. In addition, from (2.25) and (2.30), we conclude that p = 0. Therefore,
the exponentially decaying states are given by |K;) and |K3). A theory with this property
is said to have C P-invariance in mixing.

However, a nonzero p does not necessarily indicate C'P-violation. The reason for this
is that we have chosen above a particular phase in the definition of the states |K") and
|?O>. As we will see in section 2.4, a mass matrix where 7 is a pure phase is physically

equivalent to the case where the exponentially decaying states are |K) and |K3), whereas
one still has (2.31).

Taking into account the freedom in the choice of the phase in the definition of KO, FO,
one finds from (2.76) that C'P-invariance always leads to (2.31), from where one can easily
conclude that

f=¢e? real. (2.32)

This consideration leads to the following necessary, but not sufficient strangeness phase
independent condition for C'P-invariance:

r
CP-invariance  — arg —= =10. (2.33)
My
This is obviously equivalent to the statement:
C'P-invariance — |f] =1. (2.34)

However, (2.33) is not a sufficient condition for CP-invariance, but only for CP-
invariance in mixing, since the mixing mechanism is not the only source of C P-violation
(see figure 2.1). In chapter 4 we will construct a C'P-violating model, even though (2.31)
is fulfilled.

Having (2.34) or (2.33) at hand we conclude our investigation of indirect C'P-violation
and turn to the second source of C'P-violation, that is C'P-violation in the amplitudes.



2.2 The K — 27 amplitudes

In this section we will analyse the decay of the kaons into two pions, K — ntx—, 7070,
Since the kaon is a spin-0 particle, the decay product, in our case two pions, has to be
a state with total angular momentum J = 0. This means that the two pions are in a
symmetric momentum state, and thus their isospin I = 1 combines in a symmetric way to
a total isospin [ = 0 or I = 2, while the state with I = 1 is forbidden by Bose-statistics.
We can construct the isospin eigenstates in question, with third isospin component I3 = 0,
with the help of the Clebsch-Gordan decomposition:

nm, 1=0) = %(|7r+<1€>7r-<—f€>>—|w°<i€>w°<—f€>>+|7r+<—f€>w-<“>>), (2.35)
mm, I=2) = % (I (Byn™ (=R)) + 2|m (B)m° (=) + |7 (—F)n~ (£))) - (2.36)

The reason for this isospin analysis is that the matrix elements of transitions from K° and
K to the same isospin state can be related by Watson’s final state theorem. Since the
two pions in the final state are scattering only elastically at the energy of the neutral kaon
mass via the strong interaction, the theorem in question leads to a J = 0, isospin I, 77
phase shift §; of the decay amplitudes [8]. Now we can parametrize the amplitudes, i.e.
the transition matrix elements of the kaons into the isospin eigenstates in the following
way:

(e, | Lw (0)| K°) = iA7e™ . (2.37)
From C' PT-invariance and Watson’s final state theorem it follows that

(e, I|Lw (0)|[K') = —iA edr . (2.38)
It is convenient to define the following quantities for later use:

Im AO d 5 Im A2
= an = .
Re Ao : Re AQ

Direct C'P-violation shows up in the lack of relative reality of the amplitudes Aq and
Ay, i.e. in the non-vanishing of & — &, as we will discuss in the next section:

€o (2.39)

C'P-invariance — arg Ag = arg Agymod 7. (2.40)

However, this is again no sufficient, but a necessary condition for C'P-invariance (see figure
2.1). This concludes the discussion of the decay amplitudes A(K — 27) and we turn now
to the parametrization of C'P-violation in neutral kaon decays.

2.3 (C'P-violating parameters

As mentioned in the introduction the C'P-violation signal is provided by the asymmetries

A(Kp, — =tr™)
- = 2.41
M+ A(Ks = ntn—)’ (241)
A(Kp, — 707
A(Ks — n970)

oo = (242)

10



In order to calculate these two ratios it is helpful to parametrize them in terms of some
other physical quantities. One possible quantity we can define to characterize the amount
of C'P-violation in K — 27 transitions is the ¢ parameter:

A(Kr, — 27,1 =0)

- . 2.4
T A(Ks = 2r,1=0) (2.43)

It is physical in the sense that it is phase convention independent (see section 2.4). How-
ever, it is not directly accessible to experiment, since we are dealing with pure isospin
states. We can express this parameter in terms of p and & with the help of (2.26), (2.27)

and (2.39) in the following way
_ p+i&

E=—". 2.44
Two other physical, i.e. phase convention independent ratios are
AKy = 2m,1 =2 A(Kg—=2mn,1=2
(K ak ) and w= (Ks il ) (2.45)

A(Ks = 2m,1=0) C A(Ks—2m,1=0)’

which again can be expressed in terms of the mixing parameter p and the complex isospin
amplitudes Aj:

. -Im AQ Re A2
A(Kyp = 2m, 1 =2) _ "Re Ag +pRe Ag (i(52=50) (2.46)
A(Kg — 2,1 =0) 1+ ip&o '
and Re Ay | - Im A
. € A9 ;olm Ag
A(Kg = 2m, 1 =2) _ Re Ay + "’Re Ag (i(52=50) (2 47)
CA(Ks = 2m,1=0) 1+ ip& ' '

Note, that w is not a parameter indicating C P-violation, but measures the fraction of the
Al = %— to the ATl = %—transitions. It is therefore a quantity showing the deviation from
the AT = %—rule. Now we define the £’-parameter as the following combination of these

, .1 (A(KL—>277,I:2) )
=L —ew). 2.4
V) A(Kg — 2m, [ =0) = (248)

After some rearrangements we finally obtain
i (1=p2eith=f) 1 (
V3 (1 +ip€)?  (Redo)?
i (1= p?)eild2=%) ReA,

SV (rier Redy @) (249)

which shows clearly the fact of ¢’ being a parameter measuring the lack of relative reality
between the two isospin amplitudes Ag and Ay. This parameter accounts thus only for
intrinsic C'P-violation specific to the the K — 27 decay, in contrast to the C P-violation

natural ratios

!/

€ ImAyReAy — ImAgReAs)

in mixing.
We are now able to express the experimentally most important C P-violating parame-
ters mgp and 74— in terms of £, &’ and w:

!/

€

e = e —r, (2.50)
2 !
c (2.51)

= - ——.
Moo 1—\/§w

11



Up to now we have made no approximation in the derivation of the above expres-
sions. However, it is useful to thin down the exact expressions by neglecting terms which
are quadratic in the C P-violating parameters, since these parameters are experimentally
known to be very small. We then obtain the following set of expressions for the C'P-
violating parameters

RGA2 -(52_50)
~ —=¢ 2.52
w Rere ? ( 5 )
e o~ pig, (2.53)
’ ) Rel42 2(5 _5)
~ L _ 2=50 2.54
€ 73 Redy (&2 = &o)e ) (2.54)

while the expressions for 799 and ny_ remain the same.

2.4 Strangeness transformation

In this section we will discuss the possibility of absorbing arbitrary phases in the definition
of the kaons, and its consequences for the C' P-violating parameters. Since the kaon states
have non-zero strangeness and the K, K are defined only by strangeness-conserving
strong interactions, one can redefine the states by using a strangeness transformation,

|K%), = e @K% = 7| KY), (2.55)
K)o = K" = 9K, (2.56)

where S is the strangeness operator:
S|K% = +|K°% and S|K’)=—-[K"). (2.57)
We define the C'P-transformation in this new basis as before:
(CP)a|K" o = =K or (CP)a = e ™ (CP)e, (2.58)

which leaves the C' P-even and C'P-odd states unchanged:

K)o = %(|K0>a—|70>a) S (CP) K = K, (2.59)
Ko)e = ——(IK%+[K) = (CP)u|Ks)e = —|Ks)a . (2.60)

V2

In terms of the fields K©, K we have

[S, K% = —-K° and [S,K']=+K". (2.61)
Using the identity
=4 Bet = B - [A, B] + %[A, (A, B] - ..., (2.62)
we get
KO = ¢mtoS g0ptiasS  —  oFia g0 (2.63)
Fg = TSR etioS = Y 2.64)

12



The action of the C'P-transformation is again defined as before:

(CPLK(CP)! = —K°, (2.65)
(CP),Ko(CP)l = —K9, (2.66)

with (CP), = e ™¥(CP)e™®. Thus K; = %(Kg — FZ) and Ky = %(Kg + KZ) are

still the C'P-even and C'P-odd combination, respectively:

TSKE-RCP)] = +5(KS-T2) (2.6)
(CPLgs(KE+RDEPL = ——

Therefore it is possible to transform the C'P-odd combination Ky into the C'P-even

combination Ky, and vice versa, if we use a strangeness transformation with o = —7:

(CP),

-5

(KS+K2). (2.68)

—iES - xS 1 i 0 —; =0 ? -0 -0 -
€ 25[(2€+ 2b:ﬁ(€+2[(_§+€ 2[(_%):%(K_g—[(_%):(hl)_%. (269)
The same effect can be achieved by a redefinition of the C'P-transformation in (2.1) and
(2.2) as well, because we have

(CP) K (CP)l = —eF’, (2.70)
(CP)L K (CP)L = —eti?2K0, (2.71)
Choosing again a = —7 we get
(CP)K°(CP)l = +K°, (2.72)
cP),K(CP)! = +K°, (2.73)

and thus, in contrast to (2.9) and (2.10),

(CP).K.(CP)l = -Ki, (2.74)

(CP),Ky(CP)l = +K,. (2.75)
Therefore, C P-invariance of a theory means that there exists a phase « such that the
theory is invariant under a (C'P),-transformation.

However, the freedom in redefining K°, K must have no effects on physical param-
eters, since any measurable quantity must be phase convention independent. By looking
at the transformation properties of the parameters involved in the description of C'P-
violation, we find:

MPy = e¥M,y, I3, = Ty, (2.76)

o = e 29, (2.77)
-1 2t 1

o toterto) (2.78)
T p+ e (i4y)

AT = eT"Ap, (2.79)

13



while M1, I'17 and ) remain invariant, since they lead to AM and I'r, —1's which are both
measurable quantities (see (2.20) and (2.21)). The action of a strangeness transformation
on the physical states |Kr) and |Kg) is given by

|I(L,S>a = eia,|](L’5> , (280)
since
I+pa I+p
——e" = " (2.81)
V1t [pal? V1t p[?
-1+ Pa  ia -1+ P ot

= ——L ¢ (2.82)

1t Pa e _ {
V1 pal? V14 pl?

where o/ depends on p and « in a non-trivial way. This means in particular that the
quantities 14—, 1o, €, £ and w as defined in (2.41), (2.42), (2.43), (2.47) and (2.48), re-
spectively, are phase convention independent, since they are ratios of transitions of Ky, g
to 2.

In the literature one often works with the Wu-Yang phase convention [10], where the
phases of K, K are chosen such that the imaginary part of Ay, and thus &, vanishes.
In this phase convention the C P-violating quantity € is directly related to the mixing
parameter: ¢ = p. However, as already stated, a non-vanishing p does not necessarily
mean C'P-violation in mixing. Thus one has to check thouroghly which phase convention
is used in the description in question, in order to prevent confusion.

In the previous section we have already stressed the importance of phase convention
independent formulations of C'P-violation. From (2.76) and (2.77) it can be seen that the
statements (2.33) and (2.34), respectively, are in fact independent of a strangeness phase
transformation, as well as (2.40). As a summary we can make the following statement
(see also figure 2.1):

C P-invariance — 2arg Ag = 2arg Ay = arg 1o mod 7. (2.83)
We will discuss this formulation of C'P-invariance by means of field theoretical models
in chapter 4.
2.5 The mass matrix in a field theoretical formulation

In this section we will make the connection between the mass matrix M, formulated by
Wigner and Weisskopf [9] in the quantum mechanical language (see appendix A), and the
two point function, in particular the 1PI-function, which is a field theoretical concept.
This is in order to discuss C P-violation in field theoretical models in terms of the two
point function, i.e. the self energy.

We begin by considering the two-point function of two kaon fields,

1 -0
~A(x) = o7 (K°(@)K"(0)) |0, (2.84)
and write its Fourier-transform as

ApY) = [MP=p*=Sph)] (2.85)



arg%;co arg%:o CP
12 QR’ 12
agAog = argAz agAo = argAz
Mo M2
ag——=z0 ag——=0
argAg # argAo argAp # argAs

Figure 2.1: A graphical representation of how CP-violation or -invariance may manifest.

where M is the mass of the free particle. The self energy X is in general a complex
quantity. The real part of the denominator has a zero at

M2, = M? —ReX(M2, ). (2.86)

We interprete in the following M, as the physical mass of the kaon.
In this work we concentrate on field-theoretical models where ¥ is obtained through a
perturbative expansion in a Lagrangian framework where

;C = Efree + Eint . (287)

In this case, ¥ amounts to the 1PI contributions of the two-point function, i.e. graphs
that remain connected if a kaon line is cut. In the following, we consider interaction
Lagrangians of the form

Lint = e L) + 03 (2.88)

int int )
(1)

where ¢; are small parameters, with ¢; = O(é3), and where £

in the fields (e.g. counterterms). To order €3, one then has

contains terms quadratic

M2, = M? — Re X (M?), (2.89)

and .
SOM) = (lLansO)l) + 5 [ d0pIT Lot @) LinaO) IP)p1 (2:90)

Since the diagonal element Ay, of the kaon mass matrix is the (complex) mass with which
the particle propagates, one has furthermore in this approximation

)y 1
=M/[l-—=M-—X%. 2.91
M =M o (291)

15



For the non-diagonal elements, we use

Y19

M=o

(2.92)

where
7
Y12 = (p, 1[Lin:(0)[p, 2) + §/d4$<P7 UT (Lint () Lint (0)) [P, 2)1P1 5 (2.93)

where the indices 1, 2 denote the K9 and ?0’ respectively.

16



Chapter 3

Experiments of ('P-violation in
neutral kaon decays

3.1 Determination of 7, and 7y

As already mentioned, the most important quantities describing C'P-violation in neutral
kaon decays are the two ratios

A(Kyp, — ntr7)

= = Jidt— 1
N+- /4([(5’ N 7T+7T_) |77+—|P 3 (3 )
= = K 3.2
700 A(Ks = 7070) |m00le" ™™, (3.2)

since their phases and amplitudes are both directly accessible by experiment. They can be
determined by looking at the intensity of 77 decays in a neutral kaon beam as a function
of proper time 7.

The beam of kaons is produced by sending high-energy protons into a target (e.g.
beryllium [11]), where mostly K together with a smaller number of K’ emerge. At 7 =10
the beam may be represented by the state

W) = Ng|K%+ NglK®), (3.3)

where Ng and Ny give the fraction of the produced particles. Since the kaons are inco-
herent, the beam evolves in time in a complicated manner,

Nx
I\l_l_p

o 1 Y - —iNgT| I
N {em kD) — e i)} (3.4)

[v(r) = {77 K ) + 77| Ks) }

Squaring the transition amplitude (7m|T|1(7)) we get the intensity of the 77 decays,
I(¢(1) — nm). After some calculation one obtains the following expression (for simplicity

we only give the decay intensity for a pure K% and Fo—beam, respectively):
I(KO(r), K(r) = m7) ~ €77 4 |n|2e™ 707 £ 2)n]e 2(Te4T8)T cos(AMT — ¢), (3.5

17



where 7, ¢ means ny_, ¢4 or oo, Poo, respectively. Since the mass difference of the long-
and short-lived kaon, AM = M — Mg, and their decay rates, I';, and I'g, can be measured
independently by different experiments, (3.5) allows one to determine both the phase and
the amplitude of ny_ and ngg, respectively.

The measured values are given in [4]:

Inoo] = (2.25940.023)-1077, (3.6)
Ine—| = (2.26940.023)-1077, (3.7)
¢00 — 43.30 :l: 1.307 (38)
by = 44.3°+0.8°. (3.9)

3.2 Determination of%'

We have seen in the previous sections that ¢ measures C'P-violation in the amplitudes.
Therefore, a deviation of the ratio %l from zero is a sign of direct C'P-violation in neu-
tral kaon decays. The first evidence for direct CP-violation has been given in 1988 by
Burkhardt et al. [12].

Now %l can be determined from the double ratio of K'g and K7, decay rates into charged
and neutral pions,

noo |© D(Kp —27%)/T(Kg — ntn™) (3.10)
ne-| T(Ks— 279 /T(Kp — ntn~)’ .
if we use (2.41) and (2.42) and neglect all terms quadratic in small quantities (e.g. we’):
Ny—- ~ e+¢, (3.11)
Moo =~ € — 28, . (312)

We obtain

! 1 2 1
Re ™~ 2 (1 = | Moo :_<L.ER>. (3.13)
e 6 Nt- 3 N+-

The central point in the derivation of (3.13) is that we have to a good approximation:

g g

— =~ Re— ~
€ €

51

=k (3.14)

since the phases of ¢’ and ¢ are experimentally known to be very close. To be more precise
the phase of ¢’ is determined by (2.48) and the measured value of the 77 phase shift, while
the phase of ¢ is given by [4]

AM). (3.15)

¢(c) = arctan (2
S

In the experiment one measures the double ratio of the four modes in (3.10) simulta-

neously. This allows the elimination of common systematic errors and the determination

of %l to a very high precision. The measured values can be found in [4]:

oo
N+-
8/
- = (1.5£0.8)-107°. (3.17)

= 0.9955+ 0.0023 (3.16)
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Chapter 4

Effective C P-violating models

In this chapter we discuss C'P-violation in the framework of quantum field theory of scalar
fields. Since C'PT-symmetry is guaranteed in this context [1], and since T-transformation
are antiunitary and thus involve complex conjugation, one expects that C'P-violation is
induced by coupling constants having a nonzero imaginary part.

We investigate several models of increasing complexity that allow us to calculate the
C' P-violating parameters n4_ and 199, using ordinary perturbation theory (loop expan-
sion).

4.1 A model with C'P-invariance in mixing and ¢' # 0

We begin by considering a simple model describing the decay of neutral kaons into two
pions,

»Cl = »Cfree + »Cll y

Ly = BK°7°7° 4+ yKtr™ + hee., (4.1)
where 3 and v are arbitrary complex coupling constants. In order to calculate the C'P-

violating parameters ny_ and 19y we first determine the exponentially decaying states
K 5 via the mass matrix.

4.1.1 The mass matrix and C P-invariance in mixing

As outlined in section 2.5 we calculate the elements of the mass matrix via the self energy
of the kaon. L} contributes with neutral and charged pion loops in second order. We

obtain:
E11(172) = E22(272) = (263—}' 77)7(172; M7T7 Mﬂ') ’ (42)
E12(]72) = (232 + 72)7(]72; Mrra Mrr) ’ (43)
Sa(p?) = (26" + ") T (0" My, M) 4.4)
where J (p%; M, M) is defined through
1 di 1 1
J (Mo M) = -+ / - 4.
J (p e ) i) 2m)1 12— M2 (p—1)? - M,? (4.5)
= J(0; My, My) +7 (p% Mz, M) (4.6)
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and where we have absorbed the divergent parts proportional to J (0; My, M) in the
counterterm Lagrangian

Lo =C1K'K’ + C,K°K° + O, KK (4.7)

with suitably chosen couplings C;.
Thus we have for the mass matrix elements

— 1 —
M11 :MQQ - MK_ (Qﬂﬂ+77)2M J(M%;MW,MW), (4'8)
K

M12 - _(232+72)2M 7(M[i';Mﬂ'aMrr) 3 (49)

K
My = —(26%+4?) J (M My, My) . (4.10)

2M g

We can decompose the mass matrix in its hermitian parts,
M= %(M+MT) and T = i(M - Mh, (4.11)
which yields
— 1 —
My =My = Mk —(2868+ VV)MRG J(M3; My, M) (4.12)
K
- — 1 —
My =T = —(28° +7)——ReJ(ME&; My, M), (4.13)
2Mk

_ 1 _

I'yy=ly = (268+97) MI_Im J(MF; My, M), (4.14)
K

. _ 1 _

=Ty = (28° -I—TQ)M—FIm J(M3; My, M) . (4.15)

The eigenvalues of M are given by

Ar,s = Mrs — %FL,S =M@, Q =Mz My, (4.16)
where the sign of @ is defined by the condition
Al=T[—lIs=-4ImQ <0 = ImQ>0. (4.17)
Denoting the K, - eigenstate of M in the K¥ — K _basis with (1,7) we have

M Q287+ 9Y) o407

Mis My 1262 + 2]

(4.18)

showing the fact that 7 is a pure phase in the one-loop approximation. This phase can
be transformed away with a redefinition of the kaon states with the help of a strangeness
transformation (see section 2.4), since 7 transforms then as

i — e, (4.19)

where « is the strangeness transformation angle. Choosing a = ¢;/2 we get 7 = 1 and
thus p = 0 which leads to K7, ~ K9 and Kg ~ K}, respectively, indicating C P-invariance
in mixing.
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4.1.2 The K — 27-amplitudes and direct (' P-violation

Let us now calculate the transition amplitudes for the K — 27-decay in order to find the
C P-violating quantities ngy— and 199. Our model interaction Lagrangian (4.1) induces
both K — 7% and K — 777~ transitions:

(ro70 L1 (0)|KY) = -2, (4.20)
(rrr=|LL(0)| KO = +. (4.21)

Using the Clebsch-Gordan decomposition into states with definite isospin, and taking into
account that we have no mr final state interactions and thus §; = §; = 0, we obtain

(e, I = 0JC4(0)[K®) = %(7+/3) =i, (4.22)
(rm 1= ALK = \J2r-28) = idy, (4.23)

or

Ao = —=(r2+Ba—i(n+ ), (4.24)

&,w

Ay = @(72 =22 —i(y1 — 2B1)) , (4.25)

where 3 = 81 4+ 109 and v = vy + i7v9, Bi, v real. We are now able to calculate w and the
parameters ¢, ¢’ that measures C'P-violation:

172 =26y — (11— 261) tan G

w = 2 4.26
V2 Y2+ B2 — (1 + fr) tan (4-26)

€ = —itan (% —arg A0> , (4.27)
3 1+ tan? 21

e = (B =Pm)- : 70 (4.28)

(B2 + 72 = (71 + B1) tan 51)

where @; = arg(23* + v?) & 7. The calculation of 74— and nyo is now straightforward:

Ny— = —itan <% — arg A0>
(1+ tan? w_ﬁ)(ﬂl’h — Bam)

+1 2 . . 4.29
(v2 + B2 = (1 + B1) tan ) (y2 — 71 tan 52) (429
Noo = —titan <% — arg AO>
1+ tan? £2 -
—i ( + an 2 )(5172 /6271) (430)

(v2+ B2 — (1 + B1) tan £2) (B, — By tan £2)

All these quantities show that (4.1) is in general a model inducing direct CP-violation,
i.e. &/ # 0, but no C'P-violation in mixing, i.e. the exponentially decaying states are |K1)
and |K3).
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However, if 31y2 = B27v1, or in other words if the phases ¢g and ¢, of the two couplings
B and v fulfill ¢ = ¢, modm, we have no C'P- Violation at all, and we can apply a
q“rlangeneqq transformation, e.g. with = ¢;/2 = ¢ — Z, in order to redefine the phases

of K9, K in L} such that the C'P-invariance is exphc1t in the interaction Lagrangian:

L= B KO 4 =il RO ) 070
HAyl(eerm KO 4 e o= R )t n™ (4.31)
= z|[3|(l(a — [(a)ﬂ' 70+ z|7|([(a — Kg)ﬂ'"'ﬂ'_, (4.32)

where we assumed that ¢3 = ¢,. Furthermore, the C'P-invariance shows up in €, €, 0o
and ny4_ all becoming zero. In particular, ¢ vanishes because 2arg Ay = 2arg A, = argn
(see 2.83).

We therefore conclude that in this model the non-vanishing phase difference of the
couplings that induce transitions of the kaon to 27Y and 717 =, respectively, is in fact a
necessary condition for direct C P-violation.

We now turn to the analysis of mechanisms that induce C P-violation in mixing.

4.2 A model with C'P-violation in mixing and ¢ #0

Our starting point is an interaction described by the Lagrangian (4.1), where ¢g #
@y mod 7. As outlined in the previous section this phase difference of the couplings guar-
antees direct C'P-violation, i.e. ¢’ # 0. Now C'P-violation in mixing can be realised in our
model by adding a term to £} which contributes to the off-diagonal mass matrix elements
with a phase different from the one already present. This can be incorporated for example
by an additional term like § K%nn which amounts to a contribution to My, with a phase
arg26% # arg(26% + v?). A simple model interaction with C' P-violation both in mixing
and in the amplitudes is then given by

/CQ = /Cfree + »C/

Ly = BK°7°7° +yK7tr~™ + §K%n+ hec.. (4.33)
We will now determine the exponentially decaying states |Kg ) via the mass matrix in
order to calculate the C'P-violating parameters induced by this model.
4.2.1 The mass matrix and C'P-violation in mixing

The calculation of the mass matrix M is analogous to section 4.1. The new contribution
to the self energy of the kaon coming from the additional term in (4.33) is given by

Si(p?) = Ba(p®) = 2887 (p* My, M), (4.34)
Yia(p?) = 57( s My, M) (4.35)
Y (p?) = 28°T(p* M, M,). (4.36)

Thus we have for the mass matrix

M=M= Mg — (268 +97) 57— (Mic; My, My)

2My
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1

—36 MKj(pQ; M, M), (4.37)
_ 1 —
My = —(252+72)2M[,,J(M12<';MW7MW)
o1
=5 T My, M) (4.38)
2 2 1 7T 2
My = —(28 +7)MJ(MK§Mme)
R
—O2M—KJ(p2; My, M,). (4.39)

We can decompose the mass matrix in its hermitian parts according to (2.13):

My =My, = Mg — (268 +77) 57,—Re J (Mf; M, M)

2My
_ 1
—66 F.](M]%—; My, M), (4.40)
_ . 1 — .
My = My = _(252+72)2M Re J(MZ%; M, M)
K
o1 -, .
-0 M '](MIZM M777 Mﬁ) ) (4'41)
K
_ 1 _
=T = +(268+77) M]'Im J(Me; Mg, My) (4.42)
K
_ — 1 _
To=Ts = +25 +7) i, TJ(MZE; My, M), (4.43)
K

since Im J(Mf; My, M) = 0. The eigenvalues are again determined by equations (4.16)
and (4.17). The K7, - eigenstate in the K” — K" -basis is then given by (1,7) with

: (4.44)

e _J2627(M%—;MmMn>+(2ﬂ2+72>7<Mf%—;Mme>

My 2327(]‘41%{3 My, My) + (25° + 72)J (M5 Mz, Mr)

where the sign of the square root is determined through (2.20).

Now it is obvious that the lack of relative reality of 262 and 23?4+~? is in fact responsible
for C'P-violation in mixing, since then |7j] # 1 or arg % # 0, and the states | K7, g) are
no longer orthogonal.

On the other hand, if arg2§? = arg(28? + ~?), we can easily see C'P-invariance in
mixing, since in this case 77 becomes

i = —el a2 (4.45)
which is again a pure phase that can be absorbed in the definition of the kaons by applying
a strangeness transformation with a transformation angle o = argd & 7. We then have
=1 and
17

= ? =0 ,

147
which means in particular that the exponentially decaying states are the C' P-eigenstates,
Ki ~ Ky and Kg ~ Ky, as in the previous model.

p (4.46)
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4.2.2 The K — 2r-amplitudes and direct (' P-violation

The additional term in (4.33) gives no contribution to the decay amplitudes of the kaon,
so we can adopt the results calculated in section 4.1 for w and £’. However, the expressions
for p and thus for €, 59y and n4_ become very complicated, since 7 is no longer a phase.
Therefore we do not display the explicit expressions for 79 and 74—, since it is not very
illuminating. Nevertheless, the non-vanishing C P-violating quantities ¢, ¢’ guarantee a
non-zero 74— and 79, and indicate that (4.33) describes in general a model showing
C P-violation both in mixing and in the amplitudes.

However, if ¢35 = ¢, mod 7 we have no direct C'P-violation, i.e. &’ = 0, and we can
apply a strangeness transformation to the kaon fields in £} with a transformation angle
o = g — % in order to get (we assume g = @)

£y = Bl K 4 R a0n
_|_|7|(ei(ws—a)[(2 + e—i(ws—a)ﬁg)ﬂﬂ—
+(e—"'a51(2 + emgfg)rm (4.47)
= (K= Ko) (187" + [y|e ) + (e T 0KE + TR )y, (4.48)

showing explicitely that only the C'P-even combination K; ~ (K" — 70) decays to two
pions. Nevertheless, ¢ # 0 and therefore 199, 74— do not vanish.

We finally come to the conclusion that there is a necessary phase independent condition
for each C'P-violation in mixing and in the amplitudes. The latter requires a nonvanishing
phase difference of the couplings that induce transitions of the kaon to the 279 and 77~
states, i.e. two interfering amplitudes Ay and A, while C P-violation in mixing requires
at least two contributions to the self energy of the kaon each contributing with a different
phase. The explicit form of the terms in the Lagrangian, which yield the additional
contribution to the pion loops in the mass matrix, is of no importance. It can be a term
like § K%7n as above or § K97, as well as a combination of both.

4.3 A simple superweak model

In this section we will outline the features of a superweak model, i.e. a model that induces
first order AS = 2 transitions. We start with a Lagrangian inducing only transitions from
K, to 2m-states. This can be realised by couplings of the kaon to 77" and 77~ having
the same phase modulo 7, e.g.

Lint = ﬁKO(ﬂ'Oﬂ'O + 77"'77_) + h.c.. (4.49)

For this model we calculated £/ = 0 (see section 4.1) as required by a superweak model.
C P-violation in mixing is now incorporated in the model by a term in the interaction
inducing first order AS = 2 transitions, e.g. K°K". This leads to an interaction of the
form

b= BK°(n°7° + 7t n7) + SKOK® + hec.. (4.50)

In the calculation of the mass matrix we neglect terms quadratic in § and we arrive at

_ 1 _
Mii = Mqy = MK-|—3ﬂﬁMJ(MIQ(;Mﬁ,M,T), (4.51)
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I I B 5
My = 30 QMK.](AMK, M, Mﬂ-) + S Mr , (4.52)
1 - )
= 34 ——J(M&; M, M, , 4.
M21 ﬁ QMK ( K» 3 ) + QMK ( 53)

which leads to the situation |7j| # 1, and hence C'P-violation in mixing, if argd # arg 32
mod 7.

In this superweak model it is the same mechanism as in the previous sections that
leads to C' P-violation in mixing, that is two contributions to M contributing with different
phases. The eigenvalues of the mass matrix M are again determined by equations (4.16)

and (4.17). The K7, - eigenstate in the K” — K" -basis is then given by (1,7) with

(4.54)

N\ S+ 35T (M2 My, M)

. Q \l §+36%J (M3; My, M)
1= o=
12

where the sign of the square root is again determined through (2.20). The expressions for
noo and n4_ are derived from (2.50), (2.51) and ¢’ = 0, and we obtain

NMy— ="Noo=¢. (455)
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Chapter 5

The effective AS = 1 nonleptonic
weak interaction

5.1 Construction of the effective AS = 1 nonleptonic weak
Lagrangian Ly = L, + L},

The physical fields of the effective Lagrangian are the pseudoscalar mesons. They are
contained in an unitary matrix, U(z), which transforms under the chiral group, SU(3)r x

SU(3)r, as follows:
U— VRUV], (5.1)

where Vg 1, are elements of SU(3)R,7,. A convenient representation of U is the exponential
one:

U(6)=exp (i) (5.2
where
6= Ao, (5.3)

and F, is a constant with the dimension of a mass. We are especially interested in the
properties of U under the discrete transformations C, P and the combined one C'P. Using
the same phase convention as in (2.1) and considering the U-fields as classical c-number
quantities one has:

v < ouT, 5.4)
v vt (5.5)
v 5T (5.6)

With the field matrix /' we can build up two currents, L, and R, which transform only
under the left- or right-handed chiral group:

L,=iUt0,u — VviL,V/], (5.7)
R, =iUd,U" — VRR,V}. (5.8)
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From the transformation properties of U and d, under the discrete transformations C, P
and C'P we can derive those of the currents:

L, +& —m"7, (5.9)
L, % R*, (5.10)
L, & —amT, (5.11)
R, &5 —(rT (5.12)

The lowest-order effective chiral lagrangian describing the non-leptonic strong inter-
actions is dictated by the requirements of Lorentz and chiral invariance as well as under
parity inversion and charge conjugation:

2
Lo = % .Uty + (Utm + Moy} (5.13)

where the brackets () denote the trace in the flavour space of 3 x 3 matrices and M is the
quark mass matrix transforming under the chiral group exactly as U does:

m
M = 2B, T : (5.14)

ms

where By is a constant with the dimension of a mass and m = 5 (m, + mg) corresponds

1
to the isospin limit. :

Now the lowest-order effective lagrangian describing the non-leptonic weak AS =1
interactions is constructed [5] again according to the symmetries of the corresponding
interaction. From the standard model one knows that the weak interaction arises from a

symmetric product of left-chiral currents which are the charged members of an octet:
Las=1 = g{(J1p+iJ2,)(J} +1J) + (Jap + iJ5,) (J] + i)} + hee.. (5.15)

From this it follows that the nonleptonic interaction transforms as (27r,1r) @ (81, 1r)
under the chiral group.

In order to construct the operators of order p? with the required symmetry properties
it is useful to work with non-hermitian tensor matrices Q° instead of the hermitian Gell-
Mann matrices. They are defined as follows:

1
(Q2)ij = Bails; — 30abdis (5.16)

and project out the corresponding octet components of a hermitian traceless 3 x 3 matrix
P via the trace:

(QYP) = Pha. (5.17)

Thus we can construct two hermitian octet operators with the required transformation
properties yielding the octet part of the Lagrangian [13],

Ly~ @+ Q) Lulh), (5.18)
Ly~ (@5 —QDLLLY), (5.19)
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where the superscript & shows here and in the following the transformation property under
the C'P-transformation as defined in (2.1). The octet character of the two operators is
manifest when they are rewritten in terms of Gell-Mann matrices,

Q3+Q3 = e, (5.20)
Q-G = A (5.21)

The operators transforming as (27r, 1r) are constructed as the irreducible products
of the octet components of L,. In the 27-plet there are two operators with quantum
numbers AS = 1, AQ = 0, one belonging to the (I = 1)-doublet, the other to the
(I = 2)-quadruplet.

The hermitian combinations of these operators yield

LA =) ~ <Q-§L#><Q3L“> @@
H(QE+ QDL {HQIL" + 5(Q31") } (5.22)
LT =) ~ i {@QUL)QI") — (@IL)@IH)
+i((QF - @)L, {4@11") +5(Q31M) } (5.23)
CHHAL=3) ~ (QUL)(QIL") +(QIL)(QALY)
H(QF+ QDL {(Q1E") — (@31} (5.24)
R ar=3) ~ i {@QULQIL") — (@QIL)@ILY)
Q2 - QL) {(Q1E) — (@31} (5.25)
According to the authors of [14] the 27-plet operators are related by
L2 z”i( - ;) z”i( _ ;) (5.26)

in the SU(3)-limit, yielding
Lyt~ M@+ QL@

+2 {(QILNQIL") +(QTL)(@Qb 1M } (5.27)
LT~ 3i((QF - Q) Lu)(QILY)
+2i {(QALLNQIL") — (QILNQLL") } . (5.28)

Thus the 27-plet lagrangians, L177 and L7, induce both |[Al| = % and |AI| = 2 transi-
tions via its components (5.22) - (5.25).

It is convenient to write down the parts of the Lagrangian in a compact notation. For
the octet part we can write

Ly = FICs fi{QLLuL"Y (5.29)

where we deduce L3, by setting Cs = ¢F, f3 = fi=1and ff = 0 otherwise. L}, follows
from putting Cs = ¢3, f§ =1, f = —i and f{ = 0 otherwise.
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The 27-plet part is given by the tensor
L = FrCortig(Qa L) Q5 L"), (5.30)
where we obtain the different parts (5.22) - (5.28) by setting ¢ according to Table 5.1.
Table 5.1: Values of the tensor coefficients for the different parts of the 27-plet. All other
tgg are equal to zero.

Cor 1y tsi ty1 14 65 13
LEF et 2 2 3 3 0 0

Lo c; 28 -2 3 30 0
LX) ef 1 1 4 4 5 5
LET(/2) | ey 1 4 4i -4 5 -5
L33/ et 1 1 1 1 -1 -
LET(3/2) | e 1 4 1 4 4

ch and c?, céi, cé’i are free real parameters of order G, which cannot be determined
by symmetry arguments alone. They must be calculated from a more fundamental theory
or determined from experiment. However, as already stated, in SU(3)-limit, cgi and cgi

are related by

1
i = gcg and it = gcg (5.31)
Now we are able to write down the complete effective AS = 1 nonleptonic weak
interaction Lagrangian in its general form [5]:
L = L35+ L57, + L8+ .37 (5.32)

5.2 (CP-invariance of L§,, and L3,

In this section we will show that £}, and £%7, are C'P-invariant. We will give the
strangeness transformation angle o by which we redefine the fields in order to make the
C P-invariance explicit. The same angle can be used to redefine the phase of the C'P-
transformation in (2.1), as we mentioned in section 2.4.

In order to look for possible C'P-violation in L%, and L7, we have to determine
the exponentially decaying states via the mass matrix. Thus we have to calculate the self
energy (M7 ) of the kaon up to one loop. The contributing Feynman diagrams are shown
in figure 5.1. In appendix B.2 we present the results of some contributions (see figure B.1
for details).

C'P-violation in mixing shows up in a deviation from |7j| = 1, where 7} is given by (2.24).
Expanding U in the Lagrangians £, and L, to the appropriate order in the fields, we
see that the KY couples only with (¢; —icl) and (¢35 — icl), respectively, with the result
that all diagrams in figure 5.1 contribute with the same phase to the off- diagonal element
Y12(M}) of the total self energy matrix:

Y1a(ME) = (5 +icf)? - Ps(MF)

8
Ly — { Yor(ME) = (¢ — ic;)z Py(ME) (5.33)
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™n ™n \ /

Figure 5.1: Contributions to the self energy of the kaon. A simple line represents a pion
or an eta, whereas a double line denotes a kaon. The dashed loops consist of virtual

R 00 .
KtK~, K'K", ntn~, 7% nn or n¥-pairs.

ﬁ%l { Yia(My) = (5 + icg_)Q - Por (M) (5.34)

Yo (M) = (e5 —icd)? - Pr(ME)
where Ps(M#%) and Py7(ME) are some complex functions. Therefore we get from (2.24)

Ly — qj=e?, (5.35)
LE, = §=e?, (5.36)

where ¢ = arg(cd +icy) and @3 = arg(cd +ic3 ), respectively, and the sign of 7 is deter-
mined through (2.20). Since 7 is only a phase for both £}, and £, we can transform
it away with a suitable redefinition of the kaon fields by a strangeness transformation in
order to get 77 = 1, which shows that the exponentially decaying states are |Kg) = |K7)
and |Kp) = |K3), i.e. we have C'P-invariance in mixing.

Furthermore we obtain from (B.10), (B.11) and table B.1

Ly — argAg=@y £, (5.37)
L3, = argAg=argAy =3+, (5.38)

which is an evident sign of C'P-invariance in the amplitudes.

The C P-invariance to all orders can be seen explicitely in the Lagrangians £%,, and
L3, if we use a strangeness transformation to redefine the relative phase of the kaon fields.

In tensor notation (5.29) and (5.30) we have L% = e™**5L,et'*5 where S = —Q} in
the 3-dimensional representation of SU(3).

This yields for the octet part, writing ¢ + ic;” = |ef +ici |- €%, (i = 2,3):

L = lef +icy|((eF92Qd + em%2Q3) L,17)
= [ef +icy (™ (T2 Q5 + eT)QY) TS LILE), (5.39)

where we used the invariance of cyclic permutations of matrices under the trace. Since

[5,@Q5]=-Q5 and [S,Q3] = +Q3, (5.40)

we have
emioSQletiasS _  Hia2 (5.41)
emSQletioS = i3 (5.42)
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and thus
Ly = | +ieg|{(eH2r9Q] 4 e 2tQF) LaLk) . (5.43)

Choosing o = —¢y and omitting the sub- and superscript « the complete ’strangeness-
transformed’ octet Lagrangian reads in tensor notation:

Chvr =lef +icT [((Q3+QF) L, L4, (5.44)

showing the C P-invariance to all orders explicitely. Note, that the C'P-transformation is
still defined according to (2.1) and (5.11), respectively.
A similar argumentation is valid for the 27-plet part of the lagrangian, £7,:

L, = et +ics| (3(eH QLY@
+2(eF QYL QL)) + huc. (5.45)
= e +ieg] (3t e IQR O L) (S Ql et L)
+2<6+Z¢3e_jagQée-l-iaSLz)<6_Z'QSQ$6+7ZQSL5>) + h.c.. (546)

In addition to (5.40) we have

[Sv Q:i)’] = +Q§ ) (5.47)
[9, Q3] = -@Q3, (5.48)
[S,Qf] =[S, Q3] =[S, Q1] = 0, (5.49)
and thus
e—iaSQ:l%e-HaS — e-l-?f(xcgzl3 7 (550)
e—iaSQ?e+iaS — e—ia Lf ’ (551)

while Q%, Q) and ] remain invariant, and we obtain

L = lef +ics| (3T TIQELI Q1L
+2 (HEFIQLLENQILE)) + hec.. (5.52)
Choosing oo = —¢3 and omitting the sub- and superscript « this becomes
£ = lef + i) (3((QF + QI LL)QILY)
+2 {(QE L) (@) +(@TL)@QILM }) (5.53)

showing the C'P-invariance of the complete 27-plet Lagrangian explicitely to all orders.

As we already mentioned in section 2.4 this redefinition of the relative phases of the
kaon fields is in fact equivalent to a redefinition of the C'P-transformation phase in (2.1)
and (5.11), respectively.
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5.3 CP-invariance of Ly, = L3, + L]

In this section we will show that ,C;Vl = E%;l + E271 is C' P-invariant to all orders. By
looking at Ly, it is obvious that EVI71 and EWZI contribute with the same phase to the
off-diagonal self energy matrix elements, since the phase of the couplings is £7 for both
E%V_l and EWZI , which leads to arg 37 r” = 0 mod 7 reflecting C'P-invariance in mixing.
Furthermore, from (B.10), (B. 11) and table B.1, it is obvious that arg Ay = arg A,
mod m, which is equivalent to C'P-invariance in the decay amplitudes.
From (5.29), (5.30) and table 5.1 we have

Ly = 3 e's <Q% ><Q1LM> + 2¢3 €' (Q%LQ(Q?L“)
+c5 €2 (QAL,L*) + h.c.. (5.54)

Redefining the fields with a strangeness transformation with a = —7 and using again the

commutation relations of the tensors Q° with S = —Q3 as in the previous section, we
obtain:

Lin = 31e QAL (QILY) +21e5 QAL NQILY)
ez (Q3LuLY) + hc., (5.55)

where we have omitted again the sub- and superscripts of L, and L*. From (5.11) it is
obvious that Ly, is in fact C'P-even:

(CP) Ly (CPYY = 4+Lyy (5.56)

where the C'P-transformation on the new fields and currents is defined according to (2.1)
and (5.11), respectively.

5.4 (P-violation in Ly = L5, + L,

C P-violation in Ly = L3, +£%/1Z1 is reflected by the fact that none of the two necessary
conditions for C'P-invariance, (2.33) and (2.40), is fulfilled.

C P-violation in mixing shows up in the fact that we have contributions to the self
energy contributing with different phases (see (B.28) and (B.31)) to M;y and I'yy, if
@2 # @3 mod w. This leads to the statement

T
arg M—1122 # 0mod 7, (5.57)

which is sufficient for C'P-violation in mixing.

On the other hand C'P-violation in the amplitudes can be seen by looking at the decay
amplitudes Ag and A; in (B.10) and (B.11), respectively. From table B.1 we find that,
whenever ¢, # @3 mod T,

arg Ay # arg Ay mod (5.58)

which is a sufficient condition for direct €' P-violation.
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These considerations are equivalent to the statement, that there exists no phase «
for which the Lagrangian Ly (¢) = Lyy,(¢4) is invariant under (C'P), (see section 2.4),
whenever @3 # @2 mod 7. This can be seen if we rewrite the octet part as

(@5LuLY) = (QsLu)(QIL") + (Q3Lu)(Q3LY) +(Q5L,)(Q5L") (5.59)
= (QsLu)(QIL") — (Q3Lu)(Q1L"), (5.60)

where it is explicit, that the operator is the irreducible octet part of the product of two
octet currents. In the last step we have used the SU(3)-identity

Q1 +Q3+Q5=0. (5.61)
Now the complete Lagrangian Ly reads
Lw1 = (3es — e2)(Q5Lu) (@1 L") + (265 + e2)i{Q3L,u)(QTL") + hec. (5.62)

where ¢; = c;-" +ic;, j =2,3. In order to make the C'P-invariance explicit, it is obvious
that we have to change the relative phase of the kaons with the help of a strangeness
transformation with & = — arg(3c3—cy) in the first term, whereas the second term requires
a = —arg(2c3 + ¢3). However, this can not be fulfilled as long as ¢3 # ¢ mod 7. Thus
we conclude that Ly is in fact C P-violating, both in mixing and in the amplitudes.
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Appendix A

The Wigner-Weisskopf formalism

In 1930 Wigner and Weisskopf evolved a method that allows one to calculate the time
evolution of a system of unstable states [9]. In this chapter we will outline the general for-
malism and point out the approximations made in the approach of Wigner and Weisskopf.
We will strongly hold to the exposition of Nachtmann [6].

A.1 General formalism
We begin by considering a system which is described by a Hamiltonian
H="Ho+H, (A.1)

where Hy is the free Hamiltonian of the system and #' is a small perturbation. The
eigenstates of H, are n degenerate energy states |a) and a set of continuous states |3):

Hola) = Eola), (a=1,...,n), (A.2)
HolB) = FEplB). (A.3)

The small perturbation H’ is responsible for the decay of the discrete states |a) into the

continuous states. Any given state can then be written as a superposition of the eigenstates
|a) and |3). When we consider a state at time ¢ = 0 consisting only of the discrete states
|a), we are interested in the time development of such a state. For the time evolution of
the states |«) we would expect an expontial time dependence law. The Wigner-Weisskopf
method shows that this in fact the case if we use some approximations. However, for very
small and very large time scales this is not true and the states decay in a non-exponential
manner.
The time evolution of a state

1) =D aa(t)|a) + > _bs(t)]B) (A.4)
a=1 Ié)
is given by a Schrédinger equation and is best described in the interaction picture:
ey = H (o)) (A3
ot ’ '
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where

H'(t) = et (0)e~ Mot and  H'(0) = / *zH' (0, 7). (A.6)
Writing down (A.5) in components it reads

day (1)

) i = Z<O¢|'H'|a’>aa/(t) + Z ei(Eo—Eﬁ)t<a|%/|ﬁ>bB(t) (A?)
al 8
labgt(t) — ; ei(Eﬁ—Eo)t<ﬁ|H’|a/>aa1(t) + ; ei(Eﬁ—Eﬁl)t<ﬁ|/H/|ﬁl>bﬁl(t) ) (AS)

In order to solve equations (A.7) and (A.8) we have to use a first approximation, that is
we neglect the second sum in (A.8). This means in particular that the continuous states
|3) are not governed by the interaction Hamiltonian H', i.e. (3|H'|5') = 0, and are thus
stable states.

Using the Randbedingungen a,(0) = al? and bs(0) = 0 we can derive the two solutions

1 . ,
bo(t) = —i % [ e B () (A.9)
~ Jo
1
) = a® /dt’ Y (
) = al) i [ oot )

t ¢! ; 14
= [t [ e a3 ) (B (1), (A10)
B,al 0 0

in which the amplitudes a, and bg are no longer coupled. That allows one to solve (A.10)
with the help of a Laplace transformation L,

o (o) = / F dtetan (1) . (A1)
0
Using
L, [const.] = COI;St' (A.12)
t
L, UO dt’f(t’)] = L[] (A.13)
Lo [ (0] = Lopalf(®)] (A.14)
one obtains
. al) i .
in(0) = — - %; Weaat(0)an (o), (A.15)
e (ol 1) (B o)
B "o o o
Waa(0) = (a| |’y + % o= By tio (A.16)
Reading @, as a vector and W,/ as a matrix, we can solve (A.15):
(o) = (o +iW(0))"'a®. (A.17)
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One can show that (¢ + iW(o))~! is regular for Re o # 0, but contains poles on the
imaginary o-axis. In order to obtain a(t) from (A.17) we apply an inverse Laplace trans-
formation to @(o) yielding

1 eti00 1
= doet (0) Al

o) = 5 /a_m A TV (A-18)
If we put H' = 0 we have W(c) = 0 and thus a pole at ¢ = 0. The only contribution to
the integral is then apparently coming from the pole at ¢ = 0 and leads to

a(t) = a® fort > 0. (A.19)

The second approximation in the Wigner-Weisskopf method is now to assume that, for
H' # 0, the main contribution to the integral in (A.18) is still coming from the vicinity of
the pole at ¢ = 0. This is in fact reasonable, since H’ is assumed to be a small perturbation
compared to Hg. Therefore we can take W(c) to be constant in the neighbourhood of
0=0,Rec >0

W(e) - W= lim W(o). (A.20)

o——+0
In this limes we obtain from (A.16)

o H'|B)(B|H o)

Wal(e) = (af#|ay +P Y
16}

(Ko — Fg)
—im Y 8(Fo — Eg){a|H|B)(BIH'|) (A.21)
B
where P means the principal value, and we get using residuum calculus for ¢ > 0
Logetico L o) —iwt (0)
a(t) = ﬁ/s—ioo doe STt = a'™). (A.22)

Changing now from the interaction picture to the Schrédinger picture, |t)7 = e'™0|t)s, we
can write down the developement in time of the amplitudes a(t) in (A.4):

a(t) = emM1q(0) = =ilFotW)t,(0) (A.23)
where )

M=M - %r (A.24)
is the so-called non-hermitian mass matrix. Its hermitian parts M = MT and ' = I'f are
given by

1
Moo= S(M+ M1y, (A.25)
r = i(M-Mh, (A.26)
and we obtain from (A.21)
R "o (al#']B) (B
Moor = Eobaar + (a|H'|ay + P (Fo- By (A.27)
B
Pow = 273 6(Fo — Ea){alH18) (3I3]a’) (A.28)

B
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A.2 Application to the system of the neutral kaons

In the application of the formalism to the system of the neutral kaons it is important to
be aware of the assumptions we have made in the derivation of formula (A.27) and (A.28).
Furthermore we have to identify the above notation.

Considering strong and non-leptonic weak interaction in the decay of the neutral kaons,
we can take the states |K°) and |KO> as the non-disturbed eigenstates |a) of the strong
Hamiltonian Hg. The small perturbation H’ is the Hamiltonian of the non-leptonic weak
interaction, which forces the kaons to decay in the continuous states |3) = |7 7)), |[777), ...
. Therefore the assumptions made in the Wigner-Weisskopf formalism are first that these
states do not decay by virtue of the weak interaction, and second that the weak interaction
is small compared to the strong one. Both assumption are naturally fullfilled in the system
of the neutral kaons.

The mass matrix M is then a 2 X 2-matrix with the eigenvalues Ay, ¢ = My, 5 — %FL,S
and the eigenstates are given by

|I(L> = ﬁ (|I(0> + ’rN]Ll?O>> (AQQ)
. 1 [P
|Ks) = eI (1K% - 7sK")) . (A.30)

CPT-invariance of H now implies that
(K°IM|K®) = (K°| M|K®) (A.31)

and thus 77, = 7fjs. Furthermore we can derive from the CPT-invariance of H the well
known relations for the masses and decay width of particle and antiparticle, in this case
K9 and K
(KOIM|K®) = (K°|M|K"), (A.32)
(KN K% = (K°|NK°). (A.33)
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Appendix B

Calculations and results for Ly

B.1 Calculation of the K — 27 amplitudes for Ly

In this section we will calculate the amplitudes of the kaons decaying into two pions,
K — 2m, for the Lagrangian Lyy. We are especially interested in terms where exactly one
neutral kaon and two pions are involved, since these contribute to the amplitudes. After
expanding U in powers of the fields up to third order and taking only terms of the form
Knm we obtain

| o hud
L (K7m) = V2F, {(71(0 +7K°) 7, WO%(?“WO +0, (KO = FK") x+ 0 7~
+wK? 5; atotn™ + oK' 5L 77_8“7T+} , (B.1)

where 7, § and w are set according to table B.1.
Neglecting the strong final state interactions of the pions for the moment, the matrix-
element A(K® — nt77) yields

AK = 477) = (a6 (B3) Lwa (0| K°(3)
2
= —F(6(p-k1—p-ke)—w(p -k +ki-kq)) . B.2
Tl (b =)~k h k) (B2)
Considering momentum and energy conservation we may compute the Lorentz invariant
products ky - kg, p- ky and p - ko in the rest frame of the decaying particle. Thus we have
the following kinematic relations

1 1
kl-kgziM?(—Mfr, p-klzp-kzzﬁM%, (B.3)
which lead to the amplitude
A(K® = 7¥77) = —V2Fw (M} - MZ) . (B.4)

The calculation of the A(K° — 7°7%)-amplitude is straightforward and yields

A(K® = 77%) = 2Py (ME - M2) | (B.5)
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where we used (B.3) again.
With the Clebsch-Gordan decomposition of the isospin I = 0 and I = 2 states,

7, 1= 0) = % (I7* (Byn=(=F)) = = (B)x° (=) + |7+ (-B)x=(F))) . (B.6)
o, 1 =2) = % (I (B)e= (k) + 27 (B)z° (k) + |7+ (k)= (F))) . (B.7)

and taking in account now the final state phase shift, §y and &5, we get

2 . .
(rm, 1 =0|Lw1(0)|K°) = —@Fr(% +9) (ME - M2) e = idge™, (B.8)
(xm, 1 =2|Lw1 (0)|K°) = —%Fﬂ (=) (ME = M2) ez = inpe®. (B.)
Thus we finally have

2 N 2 2

Ao =[5iFr (20 +7) (mz - m2), (B.10)
2

Az = —=ifr(w =) (ME - m2), (B.11)

where v and w can be put according to table B.1.

B.2 Some contributions to the kaon self energy

In this appendix we will present some contributions to the self energy of the kaon calculated
from the Lagrangian Lw.

We will consider four different contributions to ¥(p?) (see figure B.1). The Lagrangian
Lw1 inducing these contributions is obtained by expanding U in powers of the fields up
to third order and neglecting all terms where K, K~ and n’s are involved. We recognize
the following general structure of the Lagrangian:

Lwi = V2F{iF:0, (aK® —aK") 97°
o . &
+0, (ﬁKO - KO) K’ o KO
— > 1
+ (7[(0 + 7[('()) 9, 7°=o*n°
2
L4

+0, (4K° — 8K") x+ 0" 7™

& 0 &
+wK® 9, 7t o'n” + oK' 0, ﬂ-a“ﬂ} . (B.12)

The octet-, 27-plet- and (AT = %, %)—part of L1 can be obtained by setting the couplings
according to Table B.1. Note that we can rewrite the three last terms in Ly to get

I > bxd . &
+0, (VKO = FK") 7+ 0" 77 + W' K0 0, 770" 7+ + T K° 0, 70" n™ (B.13)

with 8/ = 3§ —w and W’ = w.
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™
K 0
a) b)
™ T
° ™
0) d)

Figure B.1: Contributions of a) a pion propagator, b) a neutral kaon loop ¢) a neutral pion
loop and d) a charged pion loop to the self energy of the kaon. A simple line represents a

pion, whereas a double line denotes a kaon.

Table B.1: Couplings ¢; = ¢ — ic} appearing in the different parts of Lw1. Note that

(3
cs, ¢y and ¢f are related by ¢ = L¢3 and ¢ff = 2c3, respectively.

o Ié; ~y § w
L8, —cy 0 —cy —cy —cy
L3, 3c3 0 3c3 3cs —2¢3
BLAT=1/2) | —d -5 —d =4, ¢,
E%,IZI(AN[ =3/2) 2c4 s 2c4 2c4 —cf
Lw1 (3C3 - CQ) 0 (363 - CQ) (363 — CQ) —(263 + CQ)
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First, there is a contribution coming from a term in the Lagrangian which is quadratic
in the fields, i.e. the first line in (B.12). Then the terms cubic in the fields yield two kind
of pion loops, neutral and charged ones, and a kaon loop.

We will now present the various contributions a) - d). The indices 1 and 2 stand for

KY and Fo, respectively:

EH0Y = SH0° =200kt - K% M;), (B.14)
S0 = S0 = -20°F K (0% My), (B.15)
_ 2
S0P = 232(p2)=—6ﬁﬂb‘ﬁ{(p2—1\4%) J(v%; M, M)
—213 T (M)} (B.16)
. 2
S0P = —QﬂzFﬁ{(pQ—Mi') J(p*; Mic, M)
+ (6p* — 2M%) M,%T(]\/[K)} , (B.17)
2
() = —QﬂZFﬁ{(pZ—Mi') J(p*; M, M)
+ (6p* — 2M% ) M} -T(MK)} , (B.18)
I ) I N 2 2 2\ 2 2,
211(1’ ) = E22(27 ) = —Q’WFrr{ (P - Afw) -](P aMrra]Wrr)
+ (507 - 2ma2) a2 7O (B.19)
yc) 2 _ __2F2 2_M22] 2.M M
—‘12(p ) T g P T . (p ) T rr)
+ @p? - 2M,2> M? -T(MW)} , (B.20)
EC) 2 — _2F2 2_M22] Q.M M
21(p) 7 T p T B (p ) ] Tr)
+ <gp2 — 2M3> M? -T(M,r)} : (B.21)
w9t = sh0h) = 202w (p? - M2) T(p% My, M
—111(1’) = 22(1’)— ry@wwi{p P .(p, P rr)
+ (260 + w8 + 6 + ww)p? — 2wM?) M} -T(M,T)} . (B.22)
dy, 2y 2f _2( 2 2 2 2
212(])) - _QFW{w (p _Mw) J(p ;MrraMrr)
+2 (3" = 3w + ©2)p? - B2 M2) M? -T(M,r)}, (B.23)
yd) 2N 2 2( 2 2\ 2 2.
—‘21(p) - _2F7r w (p _Mﬂ') J(p 7MTF7M7T)
2((6 = G+ w?)p? - M) M2 -T(M,T)} , (B.24)
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where
4

-9, _ P
K(p aM)_ma (B.25)

and J(p%; My, My) and M?.T(M) are the loop functions

St M ) = 1/ d*l 1 ! (B.26)
JAP 5 My, M2 - i (271')4M12—12—i€ M22—(p—l)2—i€’ .
, 1 [ d4 1
2 — _
M"-T(M) = i/(27r)4M2—12—i8’ (8.27)

which have to be renormalised, since they are logarithmically and quadratically divergent,
respectively. The necessary counterterms are of order O(Gr%) and contribute in first
order of L. to X(p?) via —i(K;|Ly|K;)1p; cancelling the divergent parts of it. Instead,
we regularize the integrals by working in d # 4 dimensions in the following.

M?%.T(M;d) is constant in the whole p*-plane, while J(p* M, M;d) is only analytic
in the cut p?-plane, where the cut runs from p? = 4M? along the real positive axis. Since
for the computation of the mass matrix we have to take the kaon on the mass shell,
ie. p? = ML > AM2, J(M%; My, My;d) will have an imaginary part. However, this is
not the case for J(M}; Mg, My;d), where the cut runs only from p? = 4M}. along the
real positive axis. In particular we have no contribution to the decay width of the kaon
from the kaon loop. Furthermore, the contribution from J(M7; Mg, Mr;d) to the mass
matrix vanishes anyway, because the factor (p* — M%)?% in ¥;;(p?) equals zero if we put
the momentum of the kaon on the mass shell.

Collecting now all finite contributions a) - d) of Ly to the self energy of the kaon we
can write ¥;;(p?) in the form (4,5 =1,2)

%) = —Fﬁ{dfﬂFﬁK(pZ; M.?) + (o p? — of, M2) M2 - T(M.,; d)
J

+ (Ufij — O'?M%) MIQX -T(Mg; d)
+a§; (p? = M2) J (p%; Mg, My d)

2

+0ij (P2 - Mi—) J(p*; M, M d)}. (B.28)
where the coefficients ¢},, i=1,...,6 for Y11 (p?) are given by

U%l = —o@,

oy = %W+ 2(—288 + wd + @ + ww) ,

Uio)l = 277—'_ 4w ’

o = 0, (B.29)

0.5151 = 12637

U?l = 77—" 20w 3

‘7171 = 660.

The coefficients ai, are equal to ai; since X1 (p?) = g (p?):

ol =0, (B.30)
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For the off-diagonal element of the self energy, 91 (p?), we have

U%l = o )
2 3 2 2 2
I = 57 +4(0° - dw + w7,
Ug’l = 272 + 4w2 9
oy = 128%, (B.31)
USI = 4ﬂ2 ’
Ugl = 72 + 20.12 )
o = 26%.

The coefficients i, for Y15(p?) are related to ¢, by complex conjugation

o=y (B.32)
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Appendix C

Conventions

C.1 The pseudo-scalar meson fields

This section will outline the phase conventions for the pseudo-scalar meson fields. The
phases of the creation and annihilation operators are chosen following the Condon-Shortley
phase convention. They are as follows:

He) = - / 4u(») e-f‘waﬁ(p)—ema;_(p)},
@ = [ e m) - a0}
@) = [d) e-maﬂo<p>+emairo<p>}, (1)
K@) = - / e e-ipfaﬁyo(p>—e¢'pfa%o(p>},

K@) = / d(p) {777 azo (p) — €™ afeu (1) }

- ; i i rati o 4
where d,,(p) is the covariant integration measure @) 2p With these conventions we can

derive the following expectation values of the meson fields:

Oz (0)=*) = -1,
O~ (0)|=7) = +1,
Ol7°(0)[7% = +1, (C.2)
(O[K°(0)|K%) = -1,
K’ ()K" = —1.

o % + % 071"" K+
d=> " =V2 T ==+ KO | (C.3)
. K- I’ -2
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C.2 The isospin amplitudes A,

This section is designated to give a compilation of the different conventions used in the
literature to define the isospin amplitudes A;. Although not complete it is intended to
prevent confusion. In addition we give the phase convention of the C'P-transformation
used by the authors.

The Particle Data Group [4] uses C'P|K°) = —}—|F0> and defines

(I|T|K®) = Arer, (C.4)

while 7" is not defined.
Nachtmann [6] uses CP|KY) = —|K") and defines

(mr, I|T|K° = Aper (C.5)

where T is defined through the scattering matrix S = 14 i(27)*(P) - T.
Grimus [7] uses CP|K?) = —|f0> and defines

(wm, Tout| — iH. ;7 (0)|K°) = Ape® (C.6)

where H.75(0) is the effective weak Hamiltonian density at z = 0.
De Rafael [8] uses C'P|K") = —|?O> and defines

(I|T|K® = iApe®r (C.7)

where S = 1+ iT. We follow this convention upon a factor (27)*§(P) throughout this
work.

Wu and Yang [10] use CP|K°) = +|K") following Lee, Oehme and Yang [15] and
denote the decay amplitude K° — 7, I standing wave as Aj.

Maiani [16] uses CP|K?) = —}—|FO> and defines

(2m, I; out| Hw| K°) = \/gAIeMJ , (C.8)

where Hyy is the weak Hamiltonian.
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