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Chapter 1Introdu
tion and summaryQuantum 
hromodynami
s (QCD) has been the generally a

epted theory ofstrong intera
tions over the last 20 years. However, basi
 features of non-perturbative low-energy QCD physi
s, su
h as the spe
trum or the stru
tureof hadrons, have proven to be notoriously diÆ
ult to 
al
ulate.One way of doing non-perturbative 
al
ulations is by using a dis
rete spa
e-time latti
e as an ultraviolet regulator [1℄. The QCD a
tion is dis
retized byrepla
ing spa
e-time integrals with sums and derivatives with �nite di�eren
es.Then the path integral de�ning the �eld theory 
an be evaluated numeri
allyusing for example Monte Carlo te
hniques. The main problem for su
h numer-i
al latti
e 
al
ulations, however, is the 
ontrol of latti
e artifa
ts whi
h areintrodu
ed through the �nite latti
e spa
ing a.The standard dis
retization of the QCD a
tion is the Wilson gauge a
tion inthe pure gauge se
tor and the Wilson Dira
 a
tion in the fermioni
 se
tor. Thesedis
retized a
tions introdu
e errors of O(a2) and O(a), respe
tively, whi
h arelarge when the latti
e spa
ing is larger than a ' 0:1 fm. On the other hand,typi
al maximal latti
e sizes whi
h 
an be simulated in quen
hed QCD withhigh statisti
s on 
omputers in the 10 GFLOPS range are around 323� 64. Forfull QCD this marks the maximal latti
e size for obtaining reliable results evenwith the most powerful TFLOPS-
lass 
omputers like CP-PACS and QCDSP
urrently available to the latti
e 
ommunity. Re
e
ting the fa
t that the neededphysi
al latti
e sizes are around L ' 2:0 � 3:0 fm in order to avoid �nite vol-ume e�e
ts, the smallest latti
e spa
ing a

essible with reasonable e�ort is ofthe order of a ' 0:1� 0:2 fm. These observations suggest the use of improveddis
retizations of latti
e a
tions, for whi
h �nite latti
e spa
ing errors are re-moved or at least dramati
ally redu
ed. This 
an be a
hieved by systemati
allyintrodu
ing new irrelevant intera
tions into the latti
e a
tions. Among theapproa
hes proposed, there are methods using perturbatively 
al
ulated 
orre
-tion terms in order to improve the latti
e gauge a
tion beyond O(a2), like theSymanzik program or the mean�eld and tadpole improvement approa
h.An entirely di�erent approa
h is suggested by Hasenfratz and Niedermayer[2℄, namely to use perfe
t latti
e a
tions, whi
h are 
ompletely free of latti
e arti-fa
ts. A

ording to Wilson's renormalization group (RG) theory su
h quantum1



2 Chapter 1. Introdu
tion and summaryperfe
t a
tions follow the renormalized traje
tory under repeated RG transfor-mation steps and des
ribe the long-distan
e physi
s of the theory properly atany �nite latti
e spa
ing. The RG traje
tory runs into the �xed point (FP)of the RG transformation in the 
ontinuum and forms the FP a
tion. The FPa
tion at �nite 
oupling values is 
lassi
ally perfe
t, that is, it reprodu
es allthe physi
al properties of the 
lassi
al a
tion in the 
ontinuum at �nite lat-ti
e spa
ing, and is thought to be a very good approximation to the quantumperfe
t a
tion. As was pointed out in [2℄, the determination of the 
lassi
allyperfe
t FP a
tion in the 
ontinuum limit redu
es to a saddle-point problem forasymptoti
ally free theories. This approa
h was su

essfully applied to the two-dimensional non-linear �-model [2, 3℄ and the two-dimensional CP3 model [4℄.For the SU(3) gauge theory the 
lassi
ally perfe
t FP a
tion was 
onstru
tedand tested in [5, 6, 7, 8℄ and the ansatz was extended to in
lude FP a
tions forfermions as well [9, 10℄. In the 
ase of SU(2) gauge theory the FP a
tion was
onstru
ted in [11, 12, 13℄, and its 
lassi
al properties were tested on 
lassi
alinstanton solutions, both in SU(2) and SU(3) [14℄. In this 
ontext, the questionarises whether one 
an �nd a simple but 
exible parametrization whi
h is stilleasy to simulate. The need for a new parametrization whi
h 
an des
ribe theFP a
tion arbitrarily pre
ise be
omes even more urgent regarding the re
entdevelopments in the fermioni
 se
tor, where the FP Dira
 operator was shownto ful�ll the Ginsparg-Wilson relation assuring ni
e properties related to 
hiralsymmetry on the latti
e [15, 16℄. In view of the 
omputational 
ost related to theFP Dira
 operator (inversion, determinant), the expense for a well parametrizedFP gauge a
tion be
omes almost negligible and an additional e�ort in �ndingan improved parametrization of the FP gauge a
tion is justi�ed. It is mainly onthe ba
kground of these 
onsiderations that the present work has to be seen.The new parametrization on whi
h we report in this work has a mu
h ri
herstru
ture and is mu
h more 
exible than the ones previously studied. However,using a more 
omplex parametrization naturally in
orporates the danger of over-shooting and doing things wrong. Therefore the main part of the work is devotedto study the properties of the parametrized FP a
tion in order to assure thatno instabilities are introdu
ed through the more 
omplex parametrization. Inaddition, one would like to have unquestionable 
on�den
e in the parametrizedFP a
tion for the whole range of 
oarse latti
e spa
ings at whi
h the a
tion willbe used in future appli
ations.Additionally, one would like to produ
e interesting physi
al results using avery di�erent formulation of latti
e gauge theory in order to 
on�rm universal-ity. Universality is the generally a

epted assumption that in the 
ontinuumlimit, where the latti
e spa
ing goes to zero, the physi
ally meaningful quanti-ties do not depend on the a
tual dis
retization, but 
ontain only a few relevantparameters.The work presented here has been mostly a

omplished in 
ollaboration withPhilipp R�ufena
ht and Feren
 Niedermayer. In the following we give an outlineof the work and summarize the main results.In 
hapter 2 we present the 
onstru
tion and parametrization of a FP gaugea
tion on the latti
e starting from the analyti
ally 
al
ulated 
ouplings of theFP a
tion in the quadrati
 approximation, where 
are was taken not to vio-



3late the O(a2) Symanzik 
onditions. Emphasis is laid on how the FP a
tion isparametrized at latti
e spa
ings suitable for performing simulations on 
oarselatti
es and it is pointed out that the parametrization respe
ts approximates
ale invarian
e of instanton solutions. We brie
y 
omment on the 
omputa-tional 
ost of the parametrized FP a
tion and, in this 
ontext, on its usefulnessand importan
e in possible pra
ti
al appli
ations. Some te
hni
al details onhow O(a2) and O(a4) Symanzik 
onditions 
an be 
al
ulated analyti
ally arerelegated to appendix A, while appendix B 
ontains details on how to put sin-gle instanton solutions on a periodi
 latti
e and on the pro
ess of the fallingthrough the latti
e of su
h 
lassi
al instanton solutions.Chapter 3 deals with the �nite temperature de
on�ning phase transition inpure gauge theory and the determination of the 
riti
al temperature T
. Somee�ort is spent on how �nite temperature is introdu
ed in latti
e gauge theory ina 
lean way and how Polyakov loop 
orrelators �gure as an order parameter forthe phase transition. For the purpose of subje
ting the parametrized FP a
tionto s
aling tests we determine its 
riti
al 
ouplings �
 on latti
es with temporalextensions N� = 2; 3 and 4. For ea
h N� we perform simulations on severallatti
es for a �nite size s
aling study. Emphasis is put on the error 
al
ulationand estimation of the 
riti
al 
ouplings. Te
hni
al details on the Ferrenberg-Swendsen reweighting used for the determination of the 
riti
al 
ouplings arepostponed to appendix C, where the ma
hinery is set up and tested on thetwo-dimensional Ising and 10-state Potts model.In 
hapter 4 the parametrized FP a
tion is subje
t to several s
aling tests.Using spatially smeared Wilson loops we measure the stati
 quark-antiquarkpotential at various values of the gauge 
oupling and examine its s
aling behav-ior. From the potentials we extra
t the 
ommonly used referen
e s
ale r0 andan e�e
tive string tension � in order to 
he
k the s
aling behavior of the renor-malization group invariant quantities r0T
; T
=p� and r0p�. Despite the fa
tthat the determination of the referen
e s
ale r0 is hampered by systemati
 am-biguities even at modest latti
e spa
ings around a ' 0:1 fm, when di�erent butequivalent methods are applied, we observe ex
ellent s
aling of the parametrizedFP a
tion on the one per
ent level down to 
oarse latti
e spa
ings of arounda ' 0:33 fm. Details on variational te
hniques and 
orrelated �ts, whi
h areemployed for extra
ting potential energies from 
orrelation fun
tions of Wilsonloops, 
an be found in appendix D.In the following the parametrized FP a
tion is extensively tested on the glue-ball spe
trum in 
hapter 5. We des
ribe the 
onstru
tion of glueball operatorsfrom Wilson loops up to length eight and we review, in the 
ontext of glueballs,some aspe
ts of representation theory in general and of the 
ubi
 group in par-ti
ular. We perform several large simulations and measure the glueball spe
trumin all 20 symmetry 
hannels. However, due to the 
oarse latti
e spa
ings, we areable to resolve only a few lowest lying glueball masses. The lowest lying 0++
hannel shows parti
ularly large 
ut-o� e�e
ts, when measured with the Wil-son gauge a
tion, and therefore provides an ex
ellent 
andidate for testing theimprovements a
hieved with the parametrized FP a
tion. Indeed, we observemu
h redu
ed latti
e artifa
ts as 
ompared to the Wilson gauge a
tion even atmoderate latti
e spa
ings between a ' 0:10� 0:18 fm and the parametrized FP



4 Chapter 1. Introdu
tion and summarya
tion shows a perfe
t s
aling behavior. Performing the 
ontinuum limit for this
hannel we obtain an estimate of 1627(83) MeV for the 0++ glueball mass and2354(95) MeV for the 2++ glueball mass1.The last 
hapter �nally 
ontains some general 
on
lusions and prospe
ts forthe future.

1Only the 0++ value represents a 
ontinuum extrapolation, while the 2++ value 
orre-sponds to the one measured at a latti
e spa
ing of a = 0:10 fm.



Chapter 2A new parametrization ofthe FP a
tion for SU(3)latti
e gauge theory2.1 Introdu
tionWhile the FP a
tion 
an be 
al
ulated numeri
ally to arbitrary pre
ision inprin
iple, one has to resort to an approximate parametrization of the FP a
tionin pra
ti
e due to limited 
omputer power. It turns out, that �nding an appro-priate parametrization is not an easy task.In this 
hapter we present a new ansatz for the parametrization whi
h isvery general and 
exible, and whi
h allows to parametrize the FP a
tion usingmore and more 
ouplings without any further 
ompli
ations. Nevertheless, itis still easy to handle in 
ontrast to earlier attempts. The approa
h we use isbuilding simple loops (plaquettes) from single gauge links as well as smearedlinks. In this manner we are able to reprodu
e the 
lassi
al properties of theFP a
tion ex
ellently.The new ansatz is motivated by the su

ess of using fat links in simulationswith fermioni
 Dira
 operators [17, 18, 19℄. Fat links are gauge links, whi
h arelo
ally smeared over the latti
e. In this way the unphysi
al short-range 
u
-tuations inherent in the gauge �eld 
on�gurations are averaged out and latti
eartifa
ts are redu
ed dramati
ally [20℄. It is mainly in view of possible futureappli
ations of the FP gauge a
tion in 
onne
tion with FP Dira
 operators thata new and more a

urate parametrization of the FP a
tion is undertaken.Earlier parametrizations of FP a
tions were based on powers of the tra
esof loop produ
ts along generi
 
losed paths [6℄. Restri
ting the set of paths forprodu
tion runs to loops of length 8 or less and �tting in a 24 hyper
ube, one isstill left with 28 topologi
ally di�erent loops, some of them having a multipli
ityas large as 384. In addition, it turned out that the quality of the parametriza-tion of the FP a
tion did not improve upon enlarging the set beyond the 125



6 Chapter 2. A new parametrization of the FP gauge a
tionmost important loop paths. Presumably this is an indi
ation of the fa
t thatloop paths beyond length 8 are important for an a

urate parametrization of theFP a
tion. However, when extending this earlier ansatz beyond Wilson loopsof length 8, it be
omes nearly impossible to keep tra
k of all topologies andmultipli
ities, and the 
omputational overhead is una�ordable. That su
h anextension is needed is evident also from studies of topology with the FP gaugea
tion [14, 13℄, where it be
ame 
lear that at least one operator of length eighthas to be in
luded. Su
h an extension, however, already introdu
es a 
omputa-tional overhead fa
tor of 35-225 
ompared to the Wilson a
tion.The new parametrization presented here provides a way around these prob-lems. Although the 
omputational overhead is still 
onsiderable, the ansatz is
exible enough to easily respe
t s
ale invarian
e of instanton solutions and istherefore expe
ted to des
ribe the 
lassi
al and topologi
al properties of thepure gauge theory properly. Equally important is the 
apability of the newparametrization to be extendable without further 
ompli
ations and with onlya slight additional e�ort in order to des
ribe the FP a
tion more and more a
-
urate.The rest of this 
hapter is organized as follows. In the �rst se
tion we willvery brie
y review the essential ingredients forming the FP a
tion approa
hwithout giving arguments on its working me
hanism. In se
tion 2.3 we willpresent the general ansatz for the parametrization and then 
al
ulate the 
ou-plings of the FP a
tion in quadrati
 approximation while taking 
are of theO(a2) Symanzik 
onditions in se
tion 2.4. In se
tion 2.5 we will explain in detailthe 
onstru
tion of a parametrized FP a
tion suitable for simulations on 
oarselatti
es in physi
ally interesting regions. We will 
he
k that the parametrizationrespe
ts approximate s
ale invarian
e of instanton solutions. It is pointed outthat the a
tion is espe
ially suited for the use in Monte Carlo simulations, sin
ewe are not only parametrizing the FP a
tion values but also the derivativeswith respe
t to the gauge �elds as well. Finally, we add some remarks aboutthe 
omputational overhead of the parametrized FP a
tion in the last se
tionand give an estimation of its usefulness in possible appli
ations.2.2 The FP a
tionWe 
onsider SU(N) pure gauge theory1 in four dimensional Eu
lidean spa
ede�ned on a periodi
 latti
e. The partition fun
tion is de�ned throughZ(�) = Z dUe��A(U); (2.1)where dU is the invariant group measure and �A(U) is some latti
e regular-ization of the 
ontinuum a
tion. We 
an perform a real spa
e renormalizationgroup transformation (RGT),e��0A0(V ) = Z dU exp��(A(U) + T (U; V )); (2.2)1The following equations are given for general N , although the numeri
al analysis andsimulations are done for SU(3).



2.3. The parametrization 7where V is the blo
ked link variable and T (U; V ) is the blo
king kernel de�ningthe transformation,T (U; V ) = � �N XnB ;� �ReTr(V�(nB)Qy�(nB))�N �� � : (2.3)Here, Q�(nB) is a N � N matrix representing some mean of produ
ts of linkvariables U�(n), 
onne
ting the sites 2nB and 2(nB + �̂) on the �ne latti
e andN �� is a normalization 
onstant ensuring the invarian
e of the partition fun
tion.By optimizing the averaging fun
tion in Q� and the parameter �, it is possible toobtain an a
tion on the 
oarse latti
e, whi
h has a short intera
tion range. Su
han optimization has been done and we refer to [8℄ for the expli
it form of theRGT blo
k transformation. The main idea of the RGT III blo
k transformationis that, instead of using just simple staples, one additionally builds 'diagonalstaples' along the planar and spatial diagonal dire
tions orthogonal to the linkdire
tion. In this way one a
hieves that ea
h link on the �ne latti
e 
ontributesto the averaging fun
tion.On the 
riti
al surfa
e at � ! 1 equation (2.2) be
omes a saddle pointproblem representing an impli
it equation for the FP a
tion, AFP,AFP(V ) = minfUg �AFP(U) + T (U; V )	 : (2.4)The normalization 
onstant in the blo
king kernel, N �� , be
omes in the limit� !1 N1� = maxW�SU(N)�ReTr(WQ�y)	 : (2.5)The FP equation (2.4) 
an be studied analyti
ally up to quadrati
 orderin the ve
tor potentials [8℄. However, for solving the FP equation on 
oarse
on�gurations with large 
u
tuations one has to resort to numeri
al methods,and a suÆ
iently ri
h parametrization for the des
ription of the solution isrequired.2.3 The parametrizationThe approa
h we use for the parametrization is building simple loops (plaque-ttes) from single gauge links as well as from smeared links. The smeared linksare built out of staples of gauge links and depend on the plane of the plaquetteto whi
h they are 
ontributing.Let us introdu
e the notation S(�)� (n) for the sum of two staples of gaugelinks in dire
tion � in the ��-plane2:S(�)� (n) = U�(n)U�(n+ �̂)U y� (n+ �̂)+ U y� (n� �̂)U�(n� �̂)U�(n� �̂ + �̂) : (2.6)2Following the notation introdu
ed in [21℄ this is equivalent to S(�+)� , where the subs
riptdenotes the dire
tion of the staple and the supers
ript spe
i�es the plane �� and the parityin �.



8 Chapter 2. A new parametrization of the FP gauge a
tionWe shall use besides the usual symmetri
 smearing also a non-symmetri
smearing. For the symmetri
 smearing de�neQs�(n) = 16 X�6=�S(�)� (n)� U�(n) (2.7)and x�(n) = ReTr �Qs�(n)U y�(n)� : (2.8)To build a plaquette in the ��-plane from smeared links it is 
onvenient tointrodu
e asymmetri
ally smeared links. First de�ne3Q(�)� = 14 0� X�6=�;� S(�)� + �(x�)S(�)� 1A��1 + 12�(x�)�U� : (2.9)Using these matri
es we build the asymmetri
 smeared linksW (�)� = U� + 
1(x�)Q(�)� + 
2(x�)Q(�)� Uy�Q(�)� + : : : : (2.10)Here �(x), 
i(x) are polynomials with free 
oeÆ
ients, to be determined laterby a �t to the FP a
tion,�(x�) = �(0) + �(1)x� + �(2)x2� + : : : (2.11)and 
i(x�) = 
(0)i + 
(1)i x� + 
(2)i x2� + : : : : (2.12)These asymmetri
ally smeared links are no longer elements of the SU(3)gauge group, but they 
an be proje
ted ba
k to the nearest element in theSU(3) gauge group. However, the proje
tion is expensive for the use in a
tualsimulations and in addition our numeri
al studies have shown that this is notreally ne
essary but redu
es the degrees of freedom in de�ning the a
tion, su
hthat for larger 
u
tuations the FP a
tion 
annot be �tted a

urately enough.We will thus use the smeared links W (�)� as they are.From these asymmetri
ally smeared links we 
onstru
t a 'smeared plaquette'variable w�� = ReTr �1�W pl��� ; (2.13)and the ordinary Wilson plaquette variableu�� = ReTr �1� Upl��� ; (2.14)where W pl��(n) =W (�)� (n)W (�)� (n+ �̂)W (�)y� (n+ �̂)W (�)y� (n); (2.15)and Upl��(n) = U�(n)U�(n+ �̂)U y�(n+ �̂)U y� (n): (2.16)3The argument n is suppressed in the following.



2.4. The quadrati
 approximation 9Finally, the parametrized a
tion has the formA[U ℄ = 1N X�<� f(u�� ; w��) ; (2.17)where we 
hoose a polynomial in both plaquette variables,f(u;w) = Xkl pklukwl= p10u+ p01w + p20u2 + p11uw + p02w2 + : : : : (2.18)Again, the 
oeÆ
ients pkl are free parameters and will be determined later, sothat the FP a
tion is approximated 
losely.2.4 The quadrati
 approximationThe 
ouplings of the FP a
tion 
an be 
al
ulated analyti
ally in the quadrati
approximation [6, 8℄. By �tting the leading order nonlinear parameters �(0),
(0)1 ; 
(0)2 and p10; p01 to the quadrati
 part of the FP a
tion we 
an 
he
k the
exibility and the quality of the parametrization. Of 
ourse every (approximate)parametrization introdu
es O(a2) artifa
ts and violates the ni
e properties ofthe FP a
tion, however, one 
an exploit the freedom in the parametrizationto 
orre
t for this and to expli
itly ful�ll the Symanzik ('on-shell') 
onditions4up to O(a2) or even O(a4). In this way the linear parameters p10 and p01are determined as fun
tions of the rest by the norm and the O(a2) Symanzik
ondition. The �t in the three nonlinear parameters yields the following result:�(0) = 0:082 ; 
(0)1 = 0:282 ; 
(0)2 = 0:054 ; (2.19)with the 
orresponding plaquette 
oeÆ
ientsp10 = �0:3681 ; p01 = 0:6292 : (2.20)It is interesting to note that for the present ansatz of the parametrization these
ond O(a2) Symanzik 
ondition is automati
ally ful�lled. The a
tion, whereonly the leading parameters are present, is denoted by A0(U) and is a goodapproximation to the FP a
tion for suÆ
iently small �elds.Che
ks involving simple 
on�gurations with only one or two non-trivial linkssuÆ
iently 
lose to unity, show that A0(U) approximates indeed well the FPa
tion to quadrati
 order, in fa
t the relative error between A0(U) and the trueFP a
tion value is found to be less than 2%.For simulations with the FP a
tion in physi
ally interesting regions it isimportant to have a parametrization for gauge �elds on 
oarse latti
es. Weturn to this problem in the next se
tion.2.5 The FP a
tion on rough 
on�gurationsThe parametrization of the FP a
tion on strongly 
u
tuating �elds is a diÆ-
ult and deli
ate problem. In this se
tion we des
ribe brie
y the pro
edure of4For details on the O(a2) and O(a4) Symanzik 
onditions see appendix A.



10 Chapter 2. A new parametrization of the FP gauge a
tionobtaining a parametrization, whi
h uses only a 
ompa
t set of parameters, butwhi
h des
ribes the FP a
tion still suÆ
iently well for the use in a
tual simula-tions. We also provide some details about the �tting pro
edure used.Obtaining the FP a
tion values on rough 
on�gurations involves a multi-gridpro
edure. One starts with 
on�gurations fV g on a 
oarse latti
e and appliesinverse blo
king steps to obtain �ner 
on�gurations fU (n)g; n = 1; 2; : : ::fV g ! fU (1)g ! fU (2)g ! : : :! fU (k)g : (2.21)In ea
h step the 
u
tuations of the �elds are typi
ally redu
ed by a fa
tor of30 to 40 and after a suÆ
iently large number of steps k the �ne 
on�gurationfU (k)g is so smooth that any dis
retization of the gauge a
tion 
an be used onit. In pra
tise, however, memory and time prevents from doing more than onestep at on
e and one has to resort to building the FP a
tion iteratively.Starting on the �nest level with 
on�gurations for whi
h the quadrati
 ap-proximation A0 is appropriate, one ends up with physi
ally interesting 
on�g-urations and a suitable parametrization of the FP a
tion after three or foursteps. On ea
h intermediate level one has to �nd a new parametrization whi
hdes
ribes the FP a
tion a

urately enough and it shows that one has to in
ludemore and more parameters on ea
h level to do so. However, sin
e these interme-diate FP a
tions are not intended to be used in simulations, one 
an be generouswith respe
t to the numbers of parameters in
luded. This is no longer the 
asefor the last step, where we restri
ted ourselves to the smallest possible set ofparameters, whi
h still meets our requirements for the a

ura
y of the a
tion.During this iterative pro
edure it turned out to be favorable to release fromthe O(a2) Symanzik 
ondition and, indeed, it is not 
lear how important it is inthe presen
e of large 
u
tuations. In this sense the �nal a
tion is only intendedto work in a given range of 
u
tuations, whi
h, however, 
overs the physi
allyinteresting 
u
tuations a

essible with todays 
omputer power.The determination of the 
oeÆ
ients of the intermediate and the �nal parametriza-tion is done by minimizing a �2-fun
tion involving the derivatives of the gaugea
tion with respe
t to the gauge links in a given 
olour dire
tion a (N
 denotingthe number of 
olours),ÆA(U)ÆUa�(n) ; � = 1; : : : ; 4 and a = 1; : : : ; N2
 � 1; (2.22)the a
tion values of the FP a
tion on equilibrated 
on�gurations and, maybesomewhat less important, on 
lassi
al solutions of the FP a
tion. The values tobe �tted are 
al
ulated using the information we have about the �ne 
on�gu-ration. Fitting the derivatives has the advantage that one single 
on�gurationprovides V � (N2
 �1) �4 residues, where V is the volume of the latti
e, instead ofjust one for the a
tion value. As the inverse blo
king involves minimization ofthe �ne 
on�guration, whi
h is quite expensive, the approa
h redu
es 
omput-ing time 
onsiderably. In addition what 
ounts in MC simulations are really thelo
al 
hanges of the a
tion and not the total a
tion value itself, thus the presentFP a
tion is espe
ially suited for the use in MC simulations. However, one hasto keep in mind that not all of the residues are independent from ea
h other andwe 
arefully 
he
ked that enough independent information is in
luded in the �t.An interesting and important test for the 
exibility of the parametrization is



2.5. The FP a
tion on rough 
on�gurations 11whether both the requirements for �tting the derivatives and the a
tion values
an be met at the same time and it shows that this is indeed the 
ase.For addressing questions 
on
erning topology it turned out to be 
ru
ial toin
lude s
ale-invariant instanton solutions [11, 12, 13, 14℄. A good parametriza-tion of the FP a
tion should also be able to respe
t approximate s
ale invarian
eof instanton solutions. For this purpose we generated sets of SU(2) single in-stanton 
on�gurations on a 124 latti
e with instanton radius �=a ranging from3.0 down to 1.1 
entered in a hyper
ube, in a 
ube and in a plaquette5. Wethen blo
ked the 
on�gurations down to a 64 latti
e to get approximate 
lassi
alsolutions. In fa
t it turns out that they are 
lassi
al solutions of the FP a
tionfor radii larger than �=a � 0:88 as 
an be seen for example from �gure 2.1.
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Figure 2.1: SU(2) single instanton solutions on a 64 latti
e with 
enter of theinstanton at x
=a = (2 34 ; 2 34 ; 2 34 ; 2 34 ), a being the latti
e spa
ing on the 
oarselatti
e. V is the 
oarse 
on�guration and U denotes the minimized 
on�gurationon the �ne latti
e. Note, that AFP(V ) = AFP(U) + T (U; V ) and that for anexa
t 
lassi
al solution of the FP a
tion one has T (U; V ) = 0.In �gure 2.2 we show how the present parametrization works on the exampleof instanton solutions 
entered in a 
ube. The solid lines are extrapolationsfrom �nite latti
es with L = 4; 6; 8 to an in�nite latti
e. The a
tion values areexpressed in units of the one instanton a
tion value in the 
ontinuum, Ainst =4�2.In the last step we �rst �tted the derivatives on � 50 thermal 
on�gura-tions 
orresponding to a Wilson 
riti
al 
oupling at N� = 3; �W
 � 5:4. Inthe following the non-linear parameters were kept �xed, while we in
luded inaddition the a
tion values and the derivatives of � 75 thermal 
on�gurations at�FP = 2:8; 4:0; 7:0 and the a
tion values of the instanton 
on�gurations. Sin
e5For a detailed pres
ription of how the instanton 
on�gurations are generated we referto appendix B, where we also add some remarks about the minimization of su
h solutions,i.e. the me
hanism of the falling through the latti
e.
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Figure 2.2: SU(2) single instanton solutions 
entered inside a spatial 
ube. Thesolid lines are extrapolations to in�nite latti
e. For the parametrized FP a
tionwe also plot the values of the a
tion on latti
es with size L = 4; 6; 8 as dashedlines.the non-linear parameters are kept �xed we use this information only to optimizein this way the linear parameters.To assure stability of the �t we employed di�erent 
he
ks: �rst we 
he
kedthat the �2 was stable on independent 
on�gurations, whi
h were not in
ludedin the �t. Se
ondly, we su

essively ex
luded di�erent parts of the �tted datato 
he
k the stability of the data sets and, thirdly, we 
he
ked stability undervariation of the relative weights with whi
h the di�erent data sets were in
ludedin the �t. Using high order polynomials of the plaquette variables u and w thereis always the danger of generating non-positive regions in the uw-plane. Wefound that this 
an usually be 
ir
umvented by 
hoosing an appropriate set oflinear parameters pkl.The smallest a

eptable set of parameters we found 
onsists of four non-linear parameters, �(0); 
(0)1 ; 
(0)2 ; 
(0)3 and fourteen linear parameters pkl with0 < k + l � 4. The values of these parameters are given in table 2.1 and ful�llthe 
orre
t normalization. They form the �nal approximation of the FP a
tion.It is 
lear that by restri
ting ourselves to a small set of parameters we 
an notdes
ribe all the properties of the FP a
tion a

urately enough, but in 
ontrast,through the trun
ation in the parameter spa
e we introdu
e latti
e artifa
ts ofany order. Therefore the approximate FP a
tion will be subje
ted to a numberof s
aling tests in order to ensure the su

essful and 
orre
t parametrization ofthe FP a
tion and in order to size possible latti
e artifa
ts. In the following,when we speak of the FP a
tion in the 
ontext of pra
ti
al appli
ations, wereally mean the parametrized and therefore approximate FP a
tion des
ribedin this 
hapter.



2.6. Summary and 
on
lusion 13�(0) 
(0)1 
(0)2 
(0)3-0.038445 0.290643 -0.201505 0.084679p0i 0.442827 0.628828 -0.677790 0.176159p1i 0.051944 -0.918625 1.064711 -0.275300p2i 0.864881 -0.614357 0.165320p3i -0.094366 -0.020693p4i 0.022283Table 2.1: Parameters of the approximate FP a
tion.2.6 Summary and 
on
lusionBefore we 
an appre
iate the value and usefulness of the new parametrization,some 
omments are in order 
on
erning the 
omputational overhead.We have 
al
ulated the expense of the parametrized FP a
tion and 
om-pared it to the expense of an optimized Wilson gauge 
ode. The 
omputationaloverhead amounts to a fa
tor of 55-60 and 
omes mainly from 
omputing thesmeared links. On
e these links are 
al
ulated one 
an generate (
ompa
t)loops up to arbitrary length just by in
luding more and more powers of thesmeared links. The present parametrization therefore allows to rea
h an almostarbitrarily ri
h parametrization of the FP a
tion with no further 
ompli
ationswhatsoever. In 
ontrast, this was not the 
ase for the older parametrizations,whi
h were using powers of simple Wilson loops up to a given length, sin
e goingbeyond loops of length eight turned out to be impossible in pra
ti
e. Re
e
tingthese fa
ts the 
omputational overhead is 
ertainly justi�ed.Of 
ourse, the overhead is a severe drawba
k for the use of the a
tion ina
tual simulations as will be 
lear in the next 
hapters. Although the a
tionshows mu
h redu
ed latti
e artifa
ts as 
ompared to the Wilson a
tion, it is not
lear if the extra work pays o� in pure gauge theory at zero temperature. Indeed,a fair 
ompetition for di�erent a
tions is to 
ompare results whi
h are obtainedwith the same 
omputational e�ort. Allowing therefore the same amount ofsimulation time to the Wilson a
tion one 
ould simulate on latti
es whi
h arearound 2.7 times �ner than the ones a

essible to the FP a
tion at the moment.This 
orresponds to a latti
e spa
ing of around a ' 0:04 fm or a Wilson 
oupling�W ' 6:6, whi
h is already far in the 
ontinuum. Of 
ourse, it is not 
lear howthese 
onsiderations are modi�ed when the 
ontinuum is approa
hed: due to
riti
al slowing down, missing overlap of simple loop operators with physi
alobje
ts, like in the 
ase of glueball operators, the simulation 
ost is likely to growas a�6, when the latti
e spa
ing is redu
ed, and the above fa
tor of 2.7 is byfar exaggerating. In parti
ular, it is known that for thermodynami
 quantitiesthe 
omputational e�ort grows proportional to a�10 suggesting a fa
tor in thelatti
e spa
ing of � 1:5 instead. Thus, thermodynami
s of SU(3) latti
e gaugetheory is surely a �eld of pra
ti
al appli
ations for the FP a
tion.Another remark in favour of the FP a
tion 
on
erns the use of it in 
onne
-tion with a fermioni
 FP Dira
 operator, i.e. the appli
ation of the FP gaugea
tion in full QCD. In view of the expense for a Dira
 operator in dynami
al sim-ulations the overhead 
oming from the FP gauge a
tion is only a slight drawba
kand 
an easily be a�orded. In addition, one knows that FP gauge a
tions prefer



14 Chapter 2. A new parametrization of the FP gauge a
tiongauge �elds with smaller 
u
tuations 
ompared to the Wilson gauge a
tion atthe same latti
e spa
ing. Thus inversions of Dira
 operators will 
onverge fasteron gauge 
on�gurations generated with the FP a
tion thereby 
ompensating theoverhead 
oming from it.Re
apitulating it is fair to say, that the parametrized FP gauge a
tion in
ombination with the FP Dira
 operator in QCD simulations opens the inter-esting possibility to keep 
hiral symmetry and redu
e the 
ut-o� e�e
ts at thesame time. In these appli
ations the overhead 
omes almost entirely from theDira
 operator, while the overhead from the gauge a
tion is negligible. For ap-pli
ations in pure gauge theory, however, the use of the parametrized FP gaugea
tion has to be 
hosen thoughtfully.



Chapter 3The de
on�ning phasetransition in pureYang-Mills theory3.1 Introdu
tionOne of the possible s
enarios for the genesis of the universe suggests a Big-Bang,whi
h 
reated a seething soup of quarks and gluons, the quark-gluon plasma,just mi
rose
onds thereafter. As the universe expanded and energy density andtemperature de
reased, the soup 
ooled down and 
on�ned into nu
leons, whi
hin turn formed the nu
lei only a few minutes later. To 
he
k whether this istrue or not, one 
an try to free the quarks and gluons from their hadron habitatand in this way to re
reate the early stage of the universe.There are several strong indi
ations that this quark-gluon plasma has beenseen just re
ently in heavy ion beam experiments at CERN. By 
olliding, forexample, nu
leon lead beams on a solid lead target, one generates 'Little Bangs',small po
kets of hot and dense nu
lear matter, presumably forming to primordialquark-gluon plasma. One of the observed signature for the quark-gluon plasmais the sudden drop in the produ
tion of J= parti
les. This is due to the fa
tthat the 
harge of the 
onstituting 
harm-quarks are Debye-s
reened by the sur-rounding gluons and quarks and the binding into the J= is strongly suppressed.Another sign, suggesting that the quark-gluon plasma has been observed, is theex
ess of light weakly intera
ting parti
les like ele
tron-positron pairs. Yet an-other indi
ation is the in
reased produ
tion of strange parti
les. Theoreti
al
onsiderations predi
t the de
on�ning transition temperature of QCD, wherethe quarks 
ease to sti
k together in hadrons, to be around 180 MeV, roughlywhat has been observed by the CERN experiments.In pure Yang-Mills theory the gluon plasma is expe
ted to form at tempera-tures above 270 MeV. This small number is rather surprising in view of the fa
tthat the lowest gluoni
 ex
itations are high (around 1.6 GeV), however, it isfor example predi
ted by non-perturbative 
al
ulations on the latti
e. We 
antherefore use the 
riti
al temperature T
 of the de
on�ning phase transition to15



16 Chapter 3. The de
on�ning phase transition in pure Yang-Mills theorydetermine the physi
al s
ale of the latti
e 
omputations performed in this work,and, in addition to its intrinsi
 importan
e as a fundamental non-perturbativepredi
tion, it also provides an ex
ellent quantity to test the a

ura
y of theimprovement s
heme and to study latti
e artifa
ts.The 
hapter is organized as follows. We will �rst spend some e�ort on how�nite temperature is introdu
ed in latti
e gauge theory in a formal and 
leanway1. We show that the Polyakov loop 
orrelator �gures as an order parameterfor the phase transition and dis
uss the phase stru
ture of the theory. Thenwe will explain the determination of the 
riti
al 
ouplings of the parametrizedFP a
tion in
luding details about the simulations, the analysis and the errorestimation. For ea
h N� we perform simulations on several latti
es for a �nitesize s
aling study. The 
riti
al temperatures determined here will be subje
tto s
aling tests in 
hapter 4. Te
hni
al details on the Ferrenberg-Swendsenreweighting, whi
h is used in the 
ourse of 
al
ulating the 
riti
al 
ouplings,are relegated to appendix C, where the method is illustrated by means of thetwo-dimensional Ising and 10-state Potts model.3.2 Finite temperature in latti
e gauge theoryThe Eu
lidean latti
e a
tion for SU(N) Yang-Mills theories is given byS = ��Xpl ReTr (Upl) ; (3.1)where Upl is the plaquette produ
t of the gauge links:Upl = U�(x)U�(x+ �̂)U y�(x+ �̂)U y� (x); (3.2)and the sum in eq. (3.1) is over all plaquettes on the latti
e.The a
tion (3.1) is invariant under lo
al gauge transformationsU�(x)! g(x)U�(x)g�1(x+ �̂): (3.3)To dis
uss the physi
al meaning of the gauge invarian
e it is 
onvenient to
onsider a partial gauge �xing whereU4(x) = 1: (3.4)The remaining degrees of freedom are then the links in spatial dire
tions Uk(~x; t),k = 1; 2; 3. Time independent gauge transformations g(~x) are still allowed bythe 
ondition (3.4). In this gauge one 
an de�ne the transfer matrixT (U 0; U) = exp8<:�X~x;k ReTr�U 0k(~x)U yk(~x)�+ 12�Xpl Upl + 12�Xpl U 0pl9=; :(3.5)1This se
tion is based on notes whi
h originated in several dis
ussions on �nite tempera-ture gauge theory at the Institute for Theoreti
al Physi
s in Bern. I am grateful to Feren
Niedermayer for leaving me these notes.



3.2. Finite temperature in latti
e gauge theory 17The symbols U , U 0 denote here the sets of links on two neighboring time sli
es,t and t + 1, respe
tively. The summation is over spatial plaquettes in the 
or-responding hyperplanes. The physi
al meaning of the transfer matrix is that itdes
ribes the evolution of the system in Eu
lidean time; it 
an be thought asexp(�aĤ) where Ĥ is the Hamiltonian of the system. To see the analogy with apath integral in quantum me
hani
s, note that the �rst term in the exponent isanalogous to the kineti
 term � 12� (x�y)2 while the others to � 12�(V (x)+V (y)).In our 
ase they represent the ele
tri
 and the magneti
 energies.The state of the system is given by a wave fun
tion depending on the gaugelinks U = fUk(~x)g and the evolution by one time step is	(U)! 	0(U 0) = Z dUT (U 0; U)	(U): (3.6)The transfer matrix is invariant under lo
al gauge transformations,T (U 0; U) = T (gU 0; gU) ; (3.7)where g = fg(~x)g and gUk(~x) = g(~x)Uk(~x)g�1(~x+ k̂): (3.8)De�ne the operator G(g) whi
h performs a gauge transformation as(G(g)	) (U) = 	�g�1U� : (3.9)The reason for having g�1 on the rhs. is that G(g) satis�es then the relationG(h)G(g) = G(hg): (3.10)Relation (3.7) means that the transfer matrix 
ommutes with the operatorsof the gauge transformations. One has a set of independent gauge transforma-tions, ea
h a
ting only at a given site ~x,G(g) =Y~x G(g(~x)); (3.11)and G(g(~x))T = T G(g(~x)) for any ~x: (3.12)As a 
onsequen
e, the Hilbert spa
e of states falls into di�erent subspa
es. Thestates of a given subspa
e are 
hara
terized by some irredu
ible representationof SU(N) (e.g. 1, 3, 3, 8, et
. for SU(3)), one for ea
h site ~x. We shall saythat at a site where the wave fun
tion of a given subspa
e transforms non-trivially there is an external 
harge. Sin
e a
ting by the transfer matrix onsu
h a state does not 
hange its transformation properties with respe
t to thegauge transformations, these 
harges are stati
 { the gauge dynami
s does notin
uen
e them (it does not even rotate them in 
olour spa
e).The simplest and most important subspa
e is that of the gauge invariantfun
tions, 	(0) (gU) = 	(0) (U) ; (3.13)that is G(g(~x))	(0) = 	(0); for any ~x: (3.14)



18 Chapter 3. The de
on�ning phase transition in pure Yang-Mills theoryThis is the se
tor with no external 
harges.De�ne the proje
tor P0 de�ned byP0 = Z dgG(g); (3.15)or equivalently (P0	) (U) = Z dg	�g�1U� = Z dg	(gU) ; (3.16)where dg = Q~x dg(~x). It proje
ts an arbitrary fun
tion 	(U) onto the gaugeinvariant subspa
e.Consider now the partition fun
tion Z(0) of the system with no external
harges, at some �nite temperature. This is given by the tra
e of T N� taken inthe subspa
e of gauge invariant fun
tions. (Here N� is the number of time sli
esto whi
h the inverse temperature is divided.) Instead of taking the tra
e in thissubspa
e one 
an 
al
ulate the tra
e of T N�P0 in the whole Hilbert spa
e:Z(0) = Tr(0) �T N� � = Tr �T N�P0� =XfUghU jT N�P0jUi; (3.17)where U = fUk(~x)g is an arbitrary gauge 
on�guration. The state jUi is de-s
ribed by a sharp wave fun
tion 	(U 0) = ÆU 0U , analogously to the states jxi inquantum me
hani
s. Using eq. (3.15) we haveZ(0) = XfUk(~x)g Z Y~x dg(~x)hU jT Nt jgUi: (3.18)In other words, the gauge 
on�guration on the time sli
e t = 0 
oin
ides withthat on the time sli
e t = Nt only up to an arbitrary gauge transformationg = fg(~x)g. This is the 
onsequen
e of proje
ting onto the subspa
e withno external 
harges. Without the integration over g(~x) one would obtain anexpression whi
h is the sum of partition fun
tions for all possible 
hoi
es of theexternal 
harges. However, this would not be a useful quantity.Due to the fa
t that P0T = T P0 and P20 = P0, one 
an rewrite Z(0) byintrodu
ing an extra (super�
ial) P0 between any two time sli
es,Z(0) = Tr (T P0T P0 : : : T P0) = Z dU0 : : : dUNt�1dg0 : : : dgNt�1T (U0; g0U1)T (U1; g1U2) : : : T (UNt�1; gNt�1U0): (3.19)Here Ut for t = 0; : : : ; Nt�1 denote the set of spatial links fUk(~x; t); k = 1; 2; 3g.Observe that gt = fg(~x; t)g play the role of the temporal gauge links U4(~x; t)between the time sli
es t and t+ 1 sin
e ReTr�Uk(~x; t)U yk(~x; t+ 1)� goes intoReTr�Uk(~x; t) (gUk(~x; t+ 1))y� =ReTr�Uk(~x; t)g(~x+ k̂; t)U yk(~x; t+ 1)g�1(~x; t)� : (3.20)This is equivalent to the 
ontribution to the a
tion (3.1) from a plaquette in thek4 plane if we set g(~x; t) = U4(~x; t).



3.2. Finite temperature in latti
e gauge theory 19Consequently, the partition fun
tion in the se
tor with no external 
harges isgiven by the original Wilson a
tion viaPU exp(�S(U)) (without any gauge �x-ing) and with periodi
 b.
. on the gauge links in the time dire
tion, Uk(~x;Nt) =Uk(~x; 0). The proje
tion onto the gauge invariant subspa
e is a
hieved by theintegration over the time 
omponents U4(~x; t).It is important to know how the system responds when external 
harges areintrodu
ed at a given temperature. Introdu
ing a stati
 Q �Q pair at some points~x and ~y means that we restri
t the sum de�ning the partition fun
tion to thesubspa
e of fun
tions whi
h at every point ~z 6= ~x; ~y transform as a singlet, whileat points ~x and ~y as 3; 3. The partition fun
tion in this se
tor gives the freeenergy of the Q �Q pair at the relative distan
e ~r = ~x� ~y,ZQ �QZ(0) = e�FQ �Q(~r;T )=T : (3.21)The behaviour of the free energy FQ �Q(~r; T ) for large separations ~r distinguishesbetween 
on�nement and de
on�nement at the given temperature T . For T <T
, in the 
on�ning phase, for r ! 1 one has FQ �Q ! 1, while for T > T
, inthe de
on�ned phase, FQ �Q ! 
onst. For the pra
ti
al de�nition of this ratiowe need the proje
tion operator onto the fundamental representation at a givenpoint.Obviously, a gauge invariant produ
t of links along a 
losed loop in a giventime sli
e (e.g. Tr(Upl) of eq. (3.2) as the simplest 
ase) represents an admissiblewave fun
tion in the se
tor with no external 
harges. It 
an be shown that itrepresents a 
losed loop of (
olour)ele
tri
 
ux. An open string built by linksis expe
ted to des
ribe a state where at the two ends two external 
harges aresitting. To see this 
onsider a produ
t of gauge links starting from site ~x andending at ~y, 	ab(U) = �Uk(~x)Ul(~x+ k̂) : : :�ab : (3.22)The transformation property of this wave fun
tion is(G(h))	ab) (U) = 	ab �h�1U� = h�1aa0(~x)	a0b0(U)h(~y)b0b: (3.23)De�ne the operatorsPab(~x) = Z dg(~x)gab(~x)G(g(~x)): (3.24)Using the relation Z dggabg�1
d = 1N ÆadÆb
 (3.25)and eq. (3.10) one obtainsPab(~x)P
d(~x) = 1N Æb
Pad(~x): (3.26)The relation G(h(~x))Pab(~x) = h�1a
 (~x)P
b(~x) (3.27)shows that Pab(~x) a
ting on any fun
tion pi
ks up the part whi
h transformsat point ~x a

ording to the fundamental representation, with index a (for anygiven b). Moreover, a
ting on the wave fun
tion in eq. (3.22) one hasP
d(~x)	ab = 1N Æad	
b; (3.28)
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on�ning phase transition in pure Yang-Mills theorythat is P
d(~x) pi
ks up only those fun
tions whose index a at point ~x 
oin
ideswith its se
ond index d, and transforms it into a fun
tion with index 
, its �rstindex. Obviously, its tra
e (apart from the fa
tor 1=N) is the desired proje
torPQ(~x) = NP

(~x): (3.29)It satis�es the relations PQ(~x)PQ(~x) = PQ(~x) (3.30)and PQ(~x)	ab = 	ab: (3.31)For 
ompleteness, de�ne an operator whi
h proje
ts onto the appropriatesubspa
e at point ~y. For this letP�ab(~y) = Z dg(~y)g�1(~y)abG(g(~y)): (3.32)It satis�es similar relations, in parti
ularP�
d(~y)	ab = 1N Æb
	ad: (3.33)The 
orresponding proje
tor at point ~y is thenP �Q(~y) = NP�

(~y): (3.34)The proje
tion to the desired subspa
e where the only external 
harges are atsites ~x and ~y is a
hieved by multiplying the appropriate proje
tors for ea
h site,PQ �Q = PQ(~x)P �Q(~y) Y~z 6=~x;~yP0(~z): (3.35)The partition fun
tion in this subspa
e is then given byZQ �Q = 1N2Tr�T N�PQ �Q� = 1N2 XfUghU jT NtPQ �QjUi: (3.36)The 1=N2 fa
tor (whi
h is anyhow an unimportant 
onstant fa
tor) is intro-du
ed here be
ause the tra
e is in fa
t a sum over N � N di�erent possibleorientations of the external fundamental sour
e in the 
olour spa
e. We identifyagain the integration variables g(~z) in the proje
tors with the links U4(~z; t0)where t0 = Nt � 1 (or any �xed value). The partition fun
tion ZQ �Q is givenby integration over the �elds Uk(~z; t), U4(~z; t0), keeping U4(~z; t) = 1 for t 6= t0with the integrand tr(U4(~x; t0))tr(U y4 (~y; t0))exp(�S(U)). Introdu
ing an arbi-trary time dependent gauge transformation on this 
on�guration one restoresall time like links U4(~z; t). By this pro
edure the original TrU4(~x; t0) term goesover to the Polyakov loop at ~x, that is, the ratio in eq. (3.21) is obtained by the
orrelation fun
tion of Polyakov loops L(~x),ZQ �QZ(0) = hL(~x)L�(~y)i; (3.37)where



3.3. The phase stru
ture of latti
e gauge theory 21L(~x) = tr (U4(~x; 0)U4(~x; 1) : : : U4(~x;Nt � 1)) : (3.38)It is interesting to observe that using PQ �QPQ �Q = PQ �Q and T PQ �Q = PQ �QTone 
an introdu
e U4(~z; t) on all time sli
es in an alternative way. In this wayone obtains the produ
t of tra
es,Tr (U4(~x; 0))Tr (U4(~x; 1)) : : :Tr (U4(~x;Nt � 1)) : (3.39)It is easy to see that after integrating over all gauge equivalent 
on�gurationsthis reprodu
es the previous answer. Indeed, a

ording to eq. (3.25), on hasN Z dgTr �V g�1�Tr (gW ) = Tr (V W ) : (3.40)This form is, however, not 
onvenient for the use in simulations sin
e it is noisierthan the Polyakov loop, eq. (3.38).3.3 The phase stru
ture of latti
e gauge theoryIn this se
tion we will brie
y expose the main features of the de
on�ning phasetransition in pure Yang-Mills theory at �nite temperature. Based on the pre-sentation in the previous se
tion, we will �rst dwell on the 
orrelation of thePolyakov loop as the order parameter of the transition, then re
all the phasestru
ture of the theory and at the end dis
uss the 
onne
tion with the sponta-neous breakdown of the 
enter symmetry of latti
e gauge theory.3.3.1 Polyakov loop 
orrelator as the order parameter ofthe phase transitionThat pure Yang-Mills theory undergoes a phase transition at some temperatureT
 was expe
ted already some time ago [22, 23℄ and the �rst non-perturbativelatti
e determinations of the transition followed shortly after [24℄. As is already
lear from the previous se
tion, the phase transition is a

ompanied by a radi
al
hange in the behaviour of the 
orrelatorhL(~x)Ly(0)i; (3.41)where L(~x) is the Polyakov loop or Wilson lineL(~x) = Tr Pexpfig I �0 dtA4(~x; t)g; � = 1T ; (3.42)and the gluon �elds satisfy periodi
 boundary 
onditions. The simplest latti
erealization of this obje
t may be written asL(~x) = TrN��1Yt=0 U4(~x; t): (3.43)Physi
ally, L(~x) 
an be interpreted as the world line of a stati
 quark (or a 
olorsour
e) representing the self-energy of an in�nitely heavy quark as explained



22 Chapter 3. The de
on�ning phase transition in pure Yang-Mills theoryin the previous se
tion. One 
an 
on
lude that the ex
ess free energy of asingle stati
 quark relative to the absen
e of the quark is given by the thermalexpe
tation value of the Polyakov loop,e�(FQ(T )�F0(T )) = hL(~x)i = hLi: (3.44)In the last step we have used translational invarian
e of the va
uum whi
h allowsone to 
onsider the spatially averaged operator only,L � 1N3� X~x TrN��1Yt=0 U4(~x; t): (3.45)Analogously the 
orrelator of a Polyakov loop and its adjoint one having oppo-site orientation, 
ontains information about the free energy of a stati
 quark-antiquark pair, hL(~x)Ly(0)i = expf�(FQ �Q(~x; T )� F0(T ))g: (3.46)Assuming 
luster de
omposition at large distan
es one hashL(~x)Ly(0)i j~xj!1�! jhLij2: (3.47)In the pure gauge theory a single 
olour-triplet 
harge 
an not be s
reened bydynami
al sea quarks in the 
on�ned phase and its free energy FQ be
omesin�nite 
ausing a vanishing expe
tation value of L(~x). At large distan
es the
orrelation fun
tion de
ays exponentially,hL(~x)Ly(0)i � expf��(T )j~xj=Tg; (3.48)hen
e the free energy in
reases linearly with the string tension �(T ) for largeseparations signalizing 
on�nement.On the other hand, in the de
on�ned phase the free energy of a stati
 quark-antiquark pair remains �nite even at large separations and the Polyakov loopmay a
quire a non-vanishing expe
tation value hL(~x)i 6= 0. Then
e we interpretthe Polyakov loop as an order parameter for the de
on�ning phase transition inthe pure gauge theory2.Below the 
riti
al temperature we have a 
on�ning va
uum with thermal
u
tuations ex
iting a dilute gas of glueballs, while the high temperature regionis 
hara
terized as a gluon plasma phase with freely moving but still intera
tinggluons. In this phase stati
 
olour 
harges would be Debye-s
reened but not
on�ned. For a deeper understanding in terms of forming 
ux tubes see forinstan
e [27, 28℄.To 
omplete the physi
al pi
ture let us shortly tou
h the full theory in
lud-ing dynami
al quarks. In full QCD the low temperature phase 
orrespondsto the usual hadroni
 QCD va
uum produ
ing a rare�ed pion gas, whi
h 
anadequately be des
ribed by 
hiral perturbation theory. The high temperaturephase des
ribes a quark-gluon plasma 
reated for example in high energy nu
lei2This is not quite true: stri
tly speaking only the 
orrelator (3.41) has a physi
al meaningand may serve as an order parameter. The phase of the expe
tation value of hLi is not aphysi
ally measurable quantity [25℄. Nevertheless, we will adopt here the traditional viewpoint[26℄.



3.3. The phase stru
ture of latti
e gauge theory 23or heavy ion 
ollisions and presumably realized at an early stage of the universe.For small quark masses the order parameter asso
iated with the phase transi-tion is the quark 
ondensate h�qqi and the transition is related to the restorationof 
hiral symmetry.For a ni
e and thorough review on all these topi
s we refer to [29℄.3.3.2 Center symmetryUsually phase transitions are asso
iated with the spontaneous breakdown of aglobal symmetry of the system. This is also the 
ase for latti
e gauge theory at�nite temperature.In addition to lo
al periodi
 gauge symmetry asso
iated with the 
olourgauge group SU(N
), latti
e gauge theory also enjoys invarian
e under a globalunitary transformation of all temporal link matri
es U4(~x; t) of a given temporalhyperplane with �xed t by a an element z of the 
enter3 Z(N
) of SU(N
),U4(~x; t)! zU4(~x; t) 8~x with t �xed: (3.49)The invarian
e under this global Z(N
) symmetry is evident from the expli
itform of Wilson's latti
e a
tion,SWilson =� X1�i�j�3�1� 1N
Re Tr Ui(x)Uj(x+ î)U yi (x + ĵ)U yj (x)�+� X1�i�3�1� 1N
Re Tr Ui(x)U4(x+ î)U yi (x+ 4̂)U y4 (x)� ; (3.50)but of 
ourse also applies for the FP a
tion parametrized using smeared links.The argument is simple and applies to any lo
al a
tion. This 
an easily be seenby 
onsidering that any lo
al 
losed loop must pass a given spatial hypersurfa
ebetween t and t + a an even number of times, equally in both possible dire
-tions, and thereby 
an
elling the extra fa
tors. Although the a
tion and lo
alobservables are invariant under these 
enter transformations, the Polyakov loop(3.43) is not, L(~x)! zL(~x): (3.51)As a 
onsequen
e of this fa
t, latti
e 
on�gurations related by the 
enter sym-metry will o

ur with equal probability if the ground state of the theory re-spe
ts the 
enter symmetry. Thus the same number of 
on�gurations will 
on-tribute to the expe
tation value of the Polyakov loop the values L with phasese2�ik=N
 ; k = 0; : : : ; N
�1, �nally 
ausing the expe
tation value to vanish due toPk exp(2�ik=N
) = 0. As we have seen in the previous se
tion this 
orrespondsto the low temperature, 
on�ning phase of the pure gauge theory with hLi = 0.Per 
ontra, in the high temperature, de
on�ning phase with hLi 6= 0 the 
entersymmetry is ne
essarily broken4.3The 
enter of a group G 
onsists of the subgroup of elements z 
ommuting with all groupelements, i.e. zgz�1 = g for all g �G. In the 
ase of SU(N
) being the gauge group, the 
enterZ(N
) 
ontains the N
 matri
es expf2�ik=N
g; k = 0; : : : ;N
 � 1.4It goes without saying that for �nite volumes the ground state will tunnel between the N
degenerate va
ua and hen
e for
e hLi still to be zero. This 
an be regarded as a 
onsequen
e
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on�ning phase transition in pure Yang-Mills theoryIt 
an be argued on grounds of the Z(N
) symmetry that the 
riti
al be-haviour of the SU(N
) pure gauge theory is that of a three dimensional Z(N
)symmetri
 spin model with ferromagneti
 short range intera
tions [30, 31, 32,33, 34℄5. This expe
tation has been 
on�rmed in [37℄.As for illustration �gure 3.1 shows the restoration of the 
enter symmetry asthe inverse temperature � of the system is de
reased below the 
riti
al 
oupling�
. Note the tunneling of the system between the degenerate va
ua in thede
on�ned phase. The phase 
hanges and the 
oexisten
e of the two phases areillustrated in �gure 3.2 where we show a typi
al Monte Carlo time history on a4�123 latti
e near the 
riti
al 
oupling of the FP a
tion. At the 
riti
al 
ouplingthe system 
ips between the ordered and the disordered phase giving rise tothe 
learly visible double peak stru
ture in the probability distributions of theenergy and the order parameter, typi
al for a �rst order phase transition. Figure3.3 shows the probability distributions of the Polyakov loop order parameter,jLj, and the energy at the 
riti
al 
oupling of the FP a
tion on a 2�103 latti
e.Despite this impressive eviden
e for a �rst order phase transition one has tobe 
areful: the 
hara
teristi
 �rst order phase transition dis
ontinuities in phys-i
al quantities like the Polyakov loop sus
eptibility �L or the order parameterare washed away on �nite latti
es. Nevertheless one may invoke a �nite sizes
aling analysis of thermodynami
 quantities in order to determine the order ofthe phase transition. Su
h an analysis is 
learly beyond the s
ope of the presentwork, however, it has been done for example in [38, 39, 26, 40, 37℄ with 
leareviden
e for the �rst order nature of the SU(3) de
on�nement phase transition.3.4 Determination of the temporal s
aleConsider the statisti
al partition fun
tion of a quantum me
hani
al system attemperature T , Z(T ) = Tr e�H=T : (3.52)Here, H is the Hamiltonian of the statisti
al system and Tr denotes the thermaltra
e, i.e. the sum over all states Pnhnje�H=T jni. Using the transfer matrixapproa
h as outlined in se
tion 3.2 one 
an obtain a path integral representationfor the partition fun
tion. For pure Yang-Mills theory this amounts toZ = N Z DAe�S(�)[A℄; (3.53)where A denotes the gauge �elds and N is a normalization 
onstant. Thepath integral is 
arried out over all �eld 
on�gurations satisfying the periodi
boundary 
onditions A�(~x; 0) = A�(~x; �) and S(�)[A℄ is the �nite temperatureof Gauss' law whi
h forbids a net 
harge in a �nite volume with periodi
 boundary 
onditions.Of 
ourse, these 
hanges of phases extending over the entire volume 
an not be a

omplishedin an in�nite volume, simply re
e
ting the fa
t that in this limit a single 
harge is no longerin
onsistent with Gauss' law. It is therefore 
onvenient, for any pra
ti
al purposes, to repla
eL by jLj.5In the 
ase of SU(2) one would expe
t the same 
riti
al behaviour as for the three di-mensional Ising model, whi
h shows a se
ond order phase transition, and indeed ex
ellentagreement between the 
riti
al exponents of the SU(2) Yang-Mills theory and the 3-d Isingmodel has been found [35, 36℄.
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Nτ=2, Nσ=6Figure 3.1: Restoration of the 
enter symmetry as the inverse temperature �of the system is de
reased below the �nite volume 
riti
al 
oupling �
(Nt =2) � 2:359. The plots show Monte Carlo 
al
ulations of the Polyakov looporder parameter L in the 
omplex plane on a 2� 63 latti
e. Note the tunnelingof the system between the degenerate va
ua in the de
on�ned phase and the
oexisten
e of the phases near the 
riti
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Figure 3.2: Monte Carlo time history of the modulus jLj and the phase � =arg(L) of the Polyakov loop order parameter L = jLjei� on a 4� 123 latti
e at� = 2:91 near the 
riti
al value of the FP gauge a
tion. The noisy regions in theangle plot indi
ate time intervals during whi
h the system is in the symmetri
phase where the angle is not well de�ned. The remaining time is spend inone of the three broken degenerate phases where the angle takes the values� � 0;�2�=3.a
tion S(�)[A℄ = 12 Z �0 d� Z 1�1 d3xTr(F�� (~x; �)F��(~x; �)); � = 1T : (3.54)Introdu
ing a latti
e regularization for (3.53) with latti
e spa
ing a in 
oordinatespa
e the 
orresponden
e with a 
lassi
al statisti
al system is even more evident.Thus we 
on
lude that the quantum �eld theory at �nite temperature T isequivalent to a Eu
lidean �eld theory on a spa
e-time with 
ompa
ti�ed timedire
tion of extension 1=T .The latti
e regularized version of (3.53) 
an be written down asZ = N Z DUe�S(�)[U ℄; (3.55)where the integration is over the gauge link variables U subje
t to periodi
boundary 
onditions in time dire
tion, U(~x; 0) = U(~x; �). The a
tion S(�)[U ℄is the sum of some latti
e version of F��(x)F�� (x) over all latti
e sites. In timedire
tion the latti
e extends over a �nite number of latti
e sites, N� , while inspa
e dire
tion the number of latti
e sites, N� , is in�nite in the thermodynami
limit. A

ording to the analogy des
ribed above the inverse temperature 1=Tis related to the temporal extension of the latti
e by 1=T = N�a thereby �xingthe latti
e spa
ing in physi
al units. Sin
e N� 
an only take dis
rete values itis 
onvenient to hold this relation �xed while varying the gauge 
oupling � andtherefore impli
itly the latti
e spa
ing a. In this way we move the latti
e systemthrough the phase transition obtaining �nally1T
 = N�a(�
): (3.56)
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Figure 3.3: Probability distributions of the Polyakov loop order parameter, jLj,and the energy on a 2 � 103 latti
e. The highlighted distributions show theresults at the �nite volume 
riti
al 
oupling �
(Nt = 2) = 2:3593 obtained byreweighting results at nearby �-values.
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on�ning phase transition in pure Yang-Mills theoryIn order to get a �rst impression and some feeling about the latti
e spa
ingswe are dealing with let us 
al
ulate the temporal s
ale a in physi
al units. For
onvenien
e we adopt the value from [41℄ for the 
riti
al temperature, T
 '276(2)MeV, and take it as a de�nition for the moment. The resulting quantitiesare 
olle
ted in table 3.1 and based on the results obtained in se
tion 3.5 withthe FP a
tion. The error in the s
ale 
omes entirely from the un
ertainty in theN� �
 a� [fm℄2 2.361(1) 0.3575(7)3 2.680(2) 0.2383(6)4 2.927(4) 0.1787(3)Table 3.1: Temporal s
ale of the FP a
tion at the 
riti
al 
ouplings of N� = 2; 3and 4.determination of the 
riti
al 
oupling and then
e in the 
riti
al temperature.3.5 Determination of the 
riti
al 
ouplingsThere are several alternative methods for determining the 
riti
al 
ouplings.They all give the same 
riti
al 
ouplings �
 as the spatial volume is in
reasedto in�nity. At �nite volume, however, the deviation of the estimate from �
 atin�nite volume depends on the method applied. One possible method employedin the early days of �nite temperature simulations on the latti
e is to measurethe de
on�nement fra
tion [26℄,fd(�) = 32f20(�) � 12 ; (3.57)where f20(�) is the fra
tion of measurements at a given �-value for whi
h thephase of the Polyakov loop, � = arg(L), lies within the range of �20Æ aroundthe Z(3) roots e2�ik=3; k = 0; 1; 2. The 
riti
al 
oupling �
 is then de�ned asthe point where fd(�) takes a given value. Originally [26℄, the value fd = 12 wasexploited and it was shown that the results are 
onsistent with using f30 insteadof f20. This method provides a de�nite value of �
 by linearly interpolating fromfd(�)-values bra
keting 12 and also allows reasonable error estimates. Choosinga di�erent 
riterion fd(�
) = 34 , as for example in [38, 41, 42℄, leads to di�erent
riti
al 
oupling values at �nite volumes whi
h, in any 
ase, should 
oin
idein the limit of in�nite spatial volume. However, our �ndings are 
ompletelyopposite: we determined the 
riti
al values with both the fd(�) = 12 and fd(�) =34 de�nition on small volumes and performed the �nite size s
aling. The obtainedin�nite volume 
riti
al 
ouplings di�er from ea
h other signi�
antly. This isan indi
ation that the �nite s
aling regime on the small latti
es has not beenrea
hed for these quantities. Our observation is in 
omplete agreement with[42℄ and relies on the fa
t that there is no rigorous �nite size s
aling for �
determined from the de
on�nement fra
tion6.Sin
e we are working on relatively small spatial volumes it is thus 
ertainlyne
essary to refer to a de�nition of the 
riti
al 
oupling whi
h relies on a quantity6See also the dis
ussion in [37℄ and [42℄.



3.5. Determination of the 
riti
al 
ouplings 29with de�nite �nite size s
aling. Su
h physi
ally better motivated quantities arefor example response fun
tions like the spe
i�
 heat or the sus
eptibility of the�nite temperature system. For instan
e the sus
eptibility of the order parameterin the pure gauge theory, the Polyakov loop sus
eptibility, is de�ned as�L � V �hjLj2i � hjLji2� ; V = N3� ; (3.58)and is expe
ted to have a rigorous �nite size s
aling behaviour. In the thermo-dynami
 limit, the sus
eptibility develops a delta-fun
tion singularity at a �rstorder phase transition. On a �nite latti
e the singularity is rounded o� and thequantity rea
hes a peak value, �peakL , at �
(V ). In the in�nite volume limit,the singularity emerges from the s
aling of the height of the peak and its width(determining the �nite volume shifts Æ�
 in the 
riti
al 
oupling) a

ording to7�peakL � V; Æ�
 � 1V : (3.59)Using this de�nition, the determination of �
 at �nite volumes is plagued by
onsiderable un
ertainties for small volumes due to the broad width of the peakof �L as demonstrated in �gure 3.4.
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Figure 3.4: Polyakov loop sus
eptibility at N� = 4 normalized by the volume,�L=V , as a fun
tion of � for various spatial volumes with N� = 8; 10; 12; 14.The solid 
urve represent the results of reweighting with the spe
tral densitymethod and the dashed lines denote the error bars.Nevertheless, pronoun
ed peaks are visible for the spatial volumes withN�=N� � 2:5 whi
h we �nally 
onsidered (see se
tion 3.5.2) in the analysis.At last, the exa
t 
riti
al 
oupling has been determined by extensively usingthe spe
tral density reweighting method whi
h enables the 
al
ulation of ob-servables away from the values of � at whi
h the simulations are performed.7For a se
ond order phase transition one expe
ts �peakL � V 
=d� and Æ�
 � V �1=d� with
; � being the 
onventional 
riti
al exponents and d the dimension of the system.



30 Chapter 3. The de
on�ning phase transition in pure Yang-Mills theoryThis method has been �rst proposed by [43, 44℄ and was later emphasized byFerrenberg and Swendsen [45, 46℄. In appendix C we give a detailed des
riptionof the method and illustrate its appli
ation by means of simple models like theIsing model and the q-state Potts model in two dimensions.The strategy as outlined above has already been su

essfully applied to SU(3)pure gauge theory [37, 47, 42℄ as well as full QCD [48℄.3.5.1 Simulation detailsWe performed a large number of simulations on latti
es with temporal extensionN� = 2; 3 and 4 at three to six di�erent �-values near the estimated 
riti
al �
.Various spatial extensions N�=N� = 2:5 : : : 5 were exploited with the intentionof examining the �nite size s
aling of the 
riti
al 
ouplings. Con�gurations weregenerated using a Metropolis step followed by an overrelaxation step a
ting onSU(2) subgroups.At ea
h �-value we �rst let the system run for thermalization. Usually wespend 500 to 1000 sweeps depending on whether the starting 
on�guration wasrandomly generated or a 
on�guration thermalized at a nearby �-value. Forsome remarks related to in
omplete thermalization we refer to se
tion 3.5.3about error estimation.In the equilibrated system we measured the real and imaginary parts of allPolyakov loop operators averaged over the whole latti
e as well as the energyof the 
on�guration after ea
h sweep. Both the a
tion values and the modu-lus of the Polyakov loop operator were stored for later use in the reweightingpro
edure.The simulation details and run parameters are 
olle
ted in tables 3.2,3.3 and3.4, where we list the latti
e size together with the �-values and the numberof sweeps. The number of sweeps as a measure of the 
olle
ted statisti
s isinadequate for phase transitions (see the dis
ussion in se
tion 3.5.3), be
auseit is rather biased by the persisten
e time and the 
riti
al slowing down. Thepersisten
e time of one phase is de�ned as the number of sweeps divided bythe observed number of 
ip-
ops between the two phases [37℄. This quantityis sensitive only for �-values nearest to the 
riti
al 
oupling �
 and has to betaken with a large grain of salt: for the small volumes whi
h we exploited the
u
tuations within one phase 
an be as large as the separation between the twophases, and the transition time from one state to the other is sometimes as largeas the persisten
e time itself.In the last two 
olumns we list the estimated persisten
e time �p and theintegrated auto
orrelation time �int of the Polyakov loop operator. Note that theintegrated auto
orrelation time grows signi�
antly near the phase transition8and 
an therefore serve as a �rst 
rude estimate of the 
riti
al 
ouplings.3.5.2 Analysis detailsFor the determination of the 
riti
al 
ouplings in the thermodynami
 limit weresort to a two step pro
edure. First, we determine the 
riti
al 
oupling with its8In fa
t the integrated auto
orrelation time is expe
ted to diverge near se
ond order 
riti
alpoints a

ording to the dynami
al s
aling law �int � �z where � is the 
orrelation length andz is the dynami
al 
riti
al exponent. At a �rst order transition the 
orrelation length remains�nite, however, it may appear divergent due to the presen
e of tunnelings.
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latti
e size � sweeps �p �int2� 103 2.3550 30000 260.52.3575 30000 4300 283.02.3560 30000 4600 280.02� 83 2.3300 14240 29.62.3500 10144 93.52.3550 5120 127.92.3575 12288 1400 202.42.3700 10144 114.72� 63 2.3250 8096 35.62.3500 14144 650 105.42.3600 10000 700 96.82.3750 10144 39.2Table 3.2: Run parameters of the �nite temperature simulations at N� = 2.
latti
e size � sweeps �p �int3� 123 2.675 25000 114.82.680 45000 3200 188.92.685 24000 96.32.690 20000 53.43� 103 2.670 18000 67.02.680 42000 2300 89.22.685 48000 2400 104.42.690 27000 85.33� 83 2.650 10096 43.12.660 10000 48.32.670 26000 41.22.680 30000 1400 64.32.690 19000 53.52.710 10000 35.5Table 3.3: Run parameters of the �nite temperature simulations at N� = 3.



32 Chapter 3. The de
on�ning phase transition in pure Yang-Mills theorylatti
e size � sweeps �p �int4� 143 2.917 50405 4300 62.82.922 51812 4700 67.12.930 44607 64.44� 123 2.850 15000 19.72.890 15000 30.42.910 33000 34.92.920 33000 3700 66.42.930 15000 38.24� 103 2.850 10000 22.42.880 16000 37.92.890 21124 18.92.900 35000 34.22.910 35000 2100 36.02.920 20000 39.9Table 3.4: Run parameters of �nite temperature simulations at N� = 4.error on every latti
e size by means of lo
ating the peak of the Polyakov loopsus
eptibility as des
ribed in se
tion 3.5 and in appendix C. In a se
ond step weextrapolate the 
riti
al 
ouplings for ea
h value of N� to in�nite volume usingthe �nite size s
aling law for a �rst order phase transition9,�
(N� ; N�) = �
(N� ;1)� h�N�N��3 ; (3.60)where h is 
onsidered to be an universal quantity independent of N� [49℄. Infa
t, one often assumes the value h � 0:1 determined on small N� latti
es alsofor the extrapolation at larger N� [47, 41, 49℄. In our simulations of the FPa
tion the universality of the �nite size s
aling law seems to be appli
able toN� = 2 and N� = 4 while the behaviour at N� = 3 is not 
lear to us.In �gure 3.5 we show the pronoun
ed peaks of the Polyakov loop sus
epti-bility for some of the simulated latti
e sizes. The �gures from the other vol-umes look very similar. The solid lines are the interpolation obtained from theFerrenberg-Swendsen reweighting and the dashed lines represent the bootstraperror band estimation. All the interpolations are based on the 
olle
tive dataof the simulations listed in tables 3.2-3.4 for a given latti
e size, although theruns at �-values far away from the 
riti
al 
oupling do not in
uen
e the �nalresult10. By virtue of the reweighted 
urve we determine the 
riti
al 
ouplingas the lo
ation of the peak of the Polyakov loop sus
eptibility. The numeri
alresults of this analysis are listed in table 3.5, where we display the �nite size
riti
al 
ouplings together with the 
orresponding in�nite volume limit and thes
aling 
onstant h. The �nite size s
aling behaviour for ea
h N� is shown in�gure 3.6.9See remarks and dis
ussion in the introdu
tion of se
tion 3.5.10This is due to the fa
t that the distribution of 
on�gurations at a �-value far away fromthe 
riti
al 
oupling has a vanishing overlap with the distribution obtained at the 
riti
al
oupling �
.
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Figure 3.5: The Polyakov loop sus
eptibility on latti
es of size 4 � 123; 3 �123; 3 � 103 and 2 � 103. The solid 
urves are the interpolations using thespe
tral density method, the dashed lines show the bootstrap error bands. Theinterpolations are based on the data of the simulations as displayed in table 3.2,3.3 and 3.4. N� �
(N� = 2) �
(N� = 3) �
(N� = 4)6 2.3552(24)8 2.3585(12) 2.6826(23)10 2.3593(7) 2.6816(12) 2.9119(31)12 2.6803(10) 2.9173(20)14 2.9222(20)1 2.3606(13) 2.6796(18) 2.9273(35)h 0.14(9) -0.05(7) 0.25(9)Table 3.5: Results of the 
riti
al 
ouplings �
 from the peak lo
ation of thePolyakov loop sus
eptibility and the 
orresponding in�nite volume limit ob-tained a

ording to relation (3.60). The �nite size s
aling 
onstant h is alsogiven.
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Figure 3.6: Finite size s
aling of the 
riti
al 
ouplings as a fun
tion of the inversevolume for N� = 2; 3 and 4. The solid line represents a linear �t to the dataand the �lled 
ir
les are the 
orresponding in�nite volume extrapolation.
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al 
ouplings 35It is also interesting to 
he
k the �nite size s
aling behaviour of the Polyakovloop sus
eptibility peak, �peakL , as a fun
tion of the volume a

ording to (3.59).These results are shown in �gure 3.7, where we 
ompare the ratio �peakL =V withthe value expe
ted from the dis
ontinuity of the Polyakov loop expe
tationvalue, �peakLV = �12�L�2 : (3.61)For N� = 2 and 4 the observed s
aling looks 
onvin
ing while it is not at all
on
lusive for N� = 3. However, we have to admit that the volumes whi
h we
ould exploit are too small to make any rigorous statements. Nevertheless, in allthree 
ases we observe good agreement with the value from formula (3.61). As isevident from �gure 3.7 and eq. (3.61), the expe
tation value of the Polyakov looporder parameter L gets smaller for larger values of N� . Indeed, it is expe
tedto vanish exponentially in N� .One last remark 
on
erns the double peak stru
ture in the distribution ofobservables expe
ted at a �rst order phase transition. The gap between thepeaks in the 
orresponding histograms experien
es large volume dependen
eand is smeared out for small volumes. This e�e
t is even more pronoun
ed forthe energy distribution and we 
ould observe the double peak stru
ture onlyat N� = 2 where a volume ratio as large as N�=N� = 5 
ould be rea
hed.The 
orresponding energy histogram is shown in �gure 3.3. The fa
t that thisfeature of the phase transition needs large spatial volumes, i.e. N�=N� � 5, isin 
omplian
e with the observation made in simulations of the Wilson a
tionon large volumes [37℄ where the double peak stru
ture emerged 
learly only onlatti
es as large as 4� 243.
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Figure 3.7: Finite size s
aling of the Polyakov loop sus
eptibility peak normal-ized by the volume, �peakL =V , for N� = 2; 3 and 4. The dashed line representsthe estimated value expe
ted from equation (3.61) and the solid lines denote a
rude error band estimation.



3.5. Determination of the 
riti
al 
ouplings 373.5.3 Error estimationIn this se
tion we will dis
uss how we determine the errors on the measuredquantities like the Polyakov loop sus
eptibility �L and the 
riti
al 
oupling�
. We will �rst dwell on the di�erent methods employed, dis
ussing some ofthe properties like stability and reliability in general, and the appli
ation tothe 
riti
al 
oupling in parti
ular. At the end we dis
uss possible sour
es ofsystemati
 errors.General 
onsiderationsThere are many methods in business for estimating the standard error of ameasurement. Widely used are the ja
kknife and bootstrap estimate of error.For an introdu
tion see [50, 51℄.The non-parametri
 bootstrap is 
on
eptually the simplest of all te
hniquesand reveals the basi
 idea of resampling most 
learly. It extends the naiveestimate of standard deviation of a measured quantity in an obvious way, sothat it 
an be used to estimate the error on any arbitrary se
ondary quantity,no matter how 
ompli
ated it may be.The bootstrap 
an be 
ast into the following formal algorithm. Suppose adata set 
onsisting of an independent and identi
ally distributed (iid) sample ofsize N from an unknown probability distribution F ,x1; x2; : : : ; xN iid� F: (3.62)Let F̂ be the empiri
al probability distribution of the observed MC data X1 =x1; X2 = x2; : : : ; Xn = xn, giving probability mass 1=n on ea
h Xi,X1; X2; : : : ; Xn iid� F̂ ; (3.63)and �̂ = �̂(X1; X2; : : : ; Xn) the estimator of an arbitrarily 
ompli
ated se
ondaryquantity.1. Draw a random sample X�i with repla
ement from F̂ and 
al
ulate anyse
ondary quantity �̂� = �̂(X�1 ; X�2 ; : : : ; X�n).2. Independently repeat step 1 a large number B of times to obtain bootstraprepli
ations �̂�1; �̂�2; : : : ; �̂�B .3. Estimate the error Æ�̂ on the estimator �̂ by 
al
ulating the bootstrap errorÆ�̂Boot, Æ�̂Boot =  1B � 1 BXb=1(�̂�b � �̂��)2!1=2 ; (3.64)where �̂�� =PBb=1 �̂�b=B.Formally, Æ�̂Boot is really de�ned as the limit of (3.64) as B ! 1, however, inpra
ti
e one is limited to some �nite value of B.For the reweighted Polyakov loop sus
eptibility we always used B = 50 and we
he
ked in some 
ases that in
reasing this number did not have any signi�
ante�e
t on the error estimation.



38 Chapter 3. The de
on�ning phase transition in pure Yang-Mills theoryThe above algorithm applies to independent measurements only. Sin
e wemeasure the Polyakov loop after every sweep, this premise is 
learly violated.To 
ir
umvent this drawba
k one 
onsiders blo
ks of data and treats them asindependent. The resampling is then done by 
hoosing randomly the blo
ksand 
al
ulating the se
ondary quantity on the union of the 
hosen blo
ks. Asa 
onsequen
e of this pro
edure the error strongly depends on the size of theblo
k. To avoid severe under- or overestimation of the error we 
al
ulated thebootstrap error as a fun
tion of the blo
k size for ea
h run at a given �-value.We observed that the bootstrap error always rea
hed a stable plateau for blo
ksizes around 500 to 1000 sweeps.As a 
he
k for the reliability of the bootstrap we treated every sweep asindependent and 
orre
ted for the residual auto
orrelation by multiplying theerror estimate by the fa
tor p2�int, where �int is the integrated auto
orrelationtime. The error estimates obtained in this way yielded values 
omparable to thebootstrap estimates, while showing weak instability with regard to �-runs havingsimilar statisti
s. Nevertheless it supported our 
on�den
e in the bootstrappro
edure of estimating the error.Error estimate for �
The bootstrap error estimation des
ribed above extends to the multi-histogramreweighting te
hnique in a straightforward manner. In sampling theory it isnatural to 
onsider strati�ed situations where the sample spa
e H is a union ofdisjoint strata Hk, H = K[k=1Hk: (3.65)In the 
ase of the de
on�nement transition the Hk's denote the sample spa
esof the k simulated �-values �k. The data 
onsist of separate iid samples of sizeNk from ea
h stratum,xk1; xk2; : : : ; xkNk iid� Fk ; k = 1; : : : ;K; (3.66)where Fk is an unknown probability distribution on Hk. Observing Xki =xki; i = 1; : : : ; nk; k = 1; : : : ;K in a MC simulation, de�neXk1; Xk2; : : : ; Xknk iid� F̂k; k = 1; : : : ;K; (3.67)as the empiri
al probability distribution for ea
h stratum giving probabilitymass 1=nk on the Xki's and yielding an arbitrary fun
tional statisti
�̂ = �̂(F̂1; F̂2; : : : ; F̂K) (3.68)of an arbitrary se
ondary quantity. The bootstrap estimate of standard devia-tion is now obtained by the following algorithm:1. Constru
t the F̂k's.2. Draw independent bootstrap samples X�ki; i = 1; : : : ; nk from F̂k ; k =1; : : : ;K and 
al
ulate any se
ondary quantity �̂� = �̂(F̂ �1 ; F̂ �2 ; : : : ; F̂ �K).3. Independently repeat step 2, B times, obtaining bootstrap repli
ations�̂�1; �̂�2; : : : ; �̂�B .
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al 
ouplings 394. Estimate the error Æ�̂ on the estimator �̂ by 
al
ulating the bootstrap errorÆ�̂Boot, Æ�̂Boot =  1B � 1 BXb=1(�̂�b � �̂��)2!1=2 ; (3.69)where �̂�� =PBb=1 �̂�b=B.As before, Æ�̂Boot is formally de�ned as the limit of (3.69) as B ! 1. Again,the algorithm applies to independent measurements only, then
e we resampleblo
ks of de�nite blo
k size determined as mentioned above.In the 
ase of multi-histogram reweighting we 
an determine error estimatesfor any quantity involved like the spe
tral density fun
tion W (S) as well as thePolyakov loop sus
eptibilities reweighted at some given �-value. This is howwe determined the error bands in the �gures showing the Polyakov loop sus
ep-tibility peaks. We go even a step further and determine the 
riti
al 
oupling�
 by lo
ating the peak of the Polyakov loop sus
eptibility for every bootstrapsample, �̂�b = �̂b
 and estimate the error on �
 from (3.69). Sin
e the 
al
ula-tion of the �̂b
 's involves many non-trivial steps, the estimated error has to betaken with 
aution. However, we 
he
ked for the stability and reliability of theestimate by employing several tests. For example we estimated the error on �
using a blo
k size of one measurement only and 
orre
ting with the usual fa
torp2�maxint , where �maxint = max(�kint; k = 1; : : : ;K). This pro
edure usually yieldeda slightly larger error estimate than with the standard bootstrap method.As another more serious 
he
k we dis
arded one or several runs at given�-values in order to 
he
k for the stability of the peak lo
ation and to test
onsisten
y among di�erent �-runs. In almost all 
ases the 
riti
al 
oupling�
 varied only within the usual 90% 
on�den
e interval (' �1:6Æ�
), againsupporting our relian
e on the error estimation pro
edure employed.Possible sour
es of systemati
 errorsWhile the previous se
tions deal with the error of statisti
al kind only, we arealso fa
ing the problem of undete
ted systemati
 errors. There are two possiblemain sour
es of systemati
 errors involved, �rstly, in
omplete thermalization,and se
ondly, elusive and thus insuÆ
ient statisti
s as explained below. Whilethe �rst sour
e is rather easy to dete
t and straightforward to 
ir
umvent, wedo not know any 
heap remedy for the 
ure of the latter ex
ept in
reasing thestatisti
s so as to obtain enough phase 
ips.As we already mentioned in se
tion 3.5.1 we dis
arded a number of sweeps atthe beginning of ea
h run to eliminate e�e
ts due to in
omplete thermalization.Usually leaving out the �rst 500 to 1000 sweeps were enough, depending on ifone starts from a random 
on�guration or from a 
on�guration thermalized ata nearby �-value. In ea
h 
ase we 
he
ked that an in
rease in the number ofdis
arded sweeps had no systemati
 e�e
t on the mean value or the 
u
tuationsof the quantity under 
onsideration. In this way one 
an also rule out possiblee�e
ts from hysteresis.In one 
ase (Nt = 4; Ns = 14; � = 2:930) we 
ould observe su
h a systemati
shift of the Polyakov loop sus
eptibility. Presumably this is a hint at havinginsuÆ
ient statisti
s at this �-value, however, it had no e�e
t on the 
riti
al�-value obtained by reweighting.
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on�ning phase transition in pure Yang-Mills theoryAs for the se
ond sour
e, the situation is more problemati
. Near the phasetransition the number of 
ips between one and the other phase is the 
ru
ialquantity as a measure of the quality of the 
olle
ted data, rather than the num-ber of sweeps. However, for larger latti
es the system remains in one of thephases for longer periods of MC time, making it hard to de
ide if one is nearthe phase transition. For the largest latti
e 
onsidered (Nt = 4; Ns = 14) weobserved periods as large as 5000 sweeps in between the phase 
hanges, thusyielding in this 'worst' 
ase only of order 10 
ips despite the large numberof sweeps. Sometimes we observed that in
reasing the statisti
s only slightlyyielded values for the sus
eptibility leaving the 95% 
on�den
e interval unex-pe
tedly often, while not improving on the statisti
al error. This may be anindi
ation that the statisti
al error runs into the trouble of easily underesti-mating the e�e
tive error near the phase transition, even when 
al
ulated withelaborated methods like the bootstrap. Then
e having of order 10 to 20 
ipsnear the phase transition is the lowest possible edge of statisti
s to have. How-ever, the reweighting te
hnique again seems to smooth over this fa
t in themanner that it 
ombines the data from di�erent �-values and thus enlargingthe a

essible information on the system by a 
onsiderable amount. In most
ases the reweighting te
hnique yielded a stable �
-value already when 
onsid-ering only half of the statisti
s, and the in
reased statisti
s was e�e
tively usedonly for 
onsolidating and stabilizing this value.Nevertheless, the danger of having elusive data 
an not be ruled out and only
olle
ting larger statisti
s will turn this sour
e of systemati
 error negligible.3.6 Con
lusions and outlookIn this 
hapter we have dis
ussed in some detail the �nite temperature de-
on�ning phase transition in pure gauge theory and the determination of the
orresponding 
riti
al 
ouplings of the parametrized FP a
tion at N� = 2; 3 and4. The small statisti
s and small latti
e sizes a

essible to us due to the 
om-putational overhead of the parametrized FP a
tion present the main obsta
lesin our 
al
ulations. As is pointed out in the last se
tion it would be desirableto have at least of the order of 20 
ips or more between the two phases so as toex
lude possible systemati
 e�e
ts. In addition, it would be useful to simulateon larger latti
es like 4� 163 and 3� 143 in order to 
he
k if the �nite size s
al-ing region is really rea
hed. Su
h studies on larger latti
es are surely needed to
larify the situation at N� = 3, where the strange �nite size s
aling behaviour isnot yet understood. In this sense, the quoted errors are to be taken with great
are, as dis
ussed in se
tion 3.5.3.Another possible dire
tion of future work is the determination of the 
rit-i
al 
ouplings at N� = 5 or 6 in order to 
he
k the s
aling behaviour of theparametrized FP a
tion at latti
e spa
ings smaller than a ' 0:15.It is 
lear that su
h proje
ts are very demanding with respe
t to 
omputerresour
es, however, there is no fundamental problem to it. Due to the sophis-ti
ated analysis methods whi
h we have developed and whi
h allow one to digout the needed physi
al information on the system, it is enough to performlong enough simulations near a phase transition at three or four 
oupling valuesonly. This, of 
ourse, simpli�es enormously the task of determining the phasetransitions.



Chapter 4S
aling properties of the FPa
tion4.1 Introdu
tionIn this 
hapter we aim at a systemati
 quantization of the improvements a
hievedwith the present parametrization of the FP a
tion. It is of 
ru
ial importan
efor any improvement pro
edure to size the remaining latti
e artifa
ts and to
he
k the extent to whi
h latti
e artifa
ts are removed at the physi
ally inter-esting latti
e spa
ings. Another issue is to de�ne the range of validity of the FPprogram, i.e. to 
he
k for a possible breakdown of the approa
h, if present, atvery 
oarse latti
e spa
ings.Both these matters 
an be ta
kled by investigating the s
aling behaviourof renormalization group (RG) invariant quantities on a large range of (
oarse)latti
e spa
ings. Any physi
al quantity measured on the latti
e is renormalizedby appropriately tuning the latti
e spa
ing when the 
ontinuum limit � ! 1is taken and then
e any given quantity measured in units of the latti
e spa
ings
ales a

ording to its dimension. S
aling 
an best be seen in dimensionless ra-tios or produ
ts of physi
al quantities whi
h are RG invariant and thus shouldbe 
onstant for all values of the gauge 
oupling and, 
orrespondingly, for all lat-ti
e spa
ings. Any deviation from this s
aling behaviour is due to the presen
eof latti
e artifa
ts.There is an in�nitely large set of quantities on whi
h the s
aling behaviourof di�erent a
tions, and in parti
ular the FP a
tion, 
an be tested. Amongthem are the stati
 quark-antiquark potential and quantities derived from itlike the string tension � or the hadroni
 s
ale r0, the 
harmonium, the torelonand the glueball spe
trum, the de
on�ning phase transition temperature as wellas other thermodynami
 quantities like the free energy, the latent heat and thesurfa
e tension in �nite temperature latti
e gauge theory and the topologi
alsus
eptibility to mention only a few. Some of these quantities have already beeninvestigated in the 
ontext of FP a
tions. For example in [6, 12℄ the s
aling ofthe torelon mass and the related string tension has been exploited as well as thestati
 potential at �nite temperature. S
aling of the topologi
al sus
eptibility41
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aling properties of the FP a
tionhas been su

essfully tested in [12℄ and ex
ellent s
aling of the free energy den-sity has been observed in [52, 53℄.The quantities whi
h we have 
hosen in this work in order to test the s
alingbehaviour of the FP a
tion are the de
on�ning phase transition temperature T
,the stati
 quark-antiquark potential at zero temperature, the hadroni
 s
ale r0and the e�e
tive string tension �.Another tempting and physi
ally very interesting possibility to size latti
eartifa
ts and to 
ompare s
aling of di�erent a
tions is provided by the glueballspe
trum. However, this is a heavyset �eld and therefore deserves a 
hapter byits own, 
f. 
hapter 5.The s
aling 
he
ks will be pushed to the extreme by exploring the behaviourof the FP a
tion on 
oarse 
on�gurations with very large 
u
tuations 
orre-sponding to N� = 2. This situation is presumably not relevant for pra
ti
alappli
ations, and indeed, it be
omes more and more diÆ
ult to measure physi-
al quantities due to the very small 
orrelation length and the rapidly vanishingsignals. Nevertheless, it is still interesting to investigate this situation in orderto 
he
k the region in whi
h the 
lassi
al approximation to the renormalizationgroup traje
tory is still valid and, in addition, it might give the possibility of
onne
ting to strong 
oupling expansions of the gauge theory [54℄.Another matter 
on
erns asymptoti
 s
aling. As opposed to s
aling, asymp-toti
 s
aling tests the behaviour of dimensionful quantities near the 
ontinuumlimit. In parti
ular, it predi
ts the dependen
e of a given quantity on the bare
oupling g. How far a spe
i�
 latti
e gauge a
tion deviates from asymptoti
s
aling is a legitimate and important question. However, it is addressed hereonly at the very edge for the 
ase of r0.The 
hapter is organized as follows. In the �rst se
tion we will investigatethe s
aling behaviour of the heavy quark-antiquark potential, thereby des
ribingpro
edures and te
hniques for measuring the potential on the latti
e. The se
ondse
tion deals with the s
aling of the 
riti
al temperature of the de
on�ningtemperature, T
, and quantities related to the stati
 potential like r0 and �,and reports on the details of the extra
tion of these quantities. Finally, in thelast se
tion we summarize the results and give a �rst, preliminary 
on
lusion onthe s
aling behaviour of the FP a
tion.4.2 S
aling of the stati
 quark-antiquark poten-tialOne of the rather easily a

essible quantities mentioned in the introdu
tion isthe stati
 quark-antiquark potential. It provides an immediate and e�e
tive testof s
aling: the 
ombinations r=r0 and r0V (r) are dimensionless and thus RGinvariant. The potential data measured at di�erent values of the gauge 
oupling� should overlap with ea
h other when the s
aling region of this observable isrea
hed. In addition, one 
an 
al
ulate the quantities r0 and � from the potential



4.2. S
aling of the stati
 quark-antiquark potential 43as explained below and they 
an be used in turn for testing the s
aling of thedimensionless 
ombinations r0T
; T
=p� and r0p�.Violations of rotational invarian
e have been found to be strong for thestandard plaquette gauge a
tion at 
oarse latti
e spa
ings [55, 56, 6℄ and there-fore it is desirable to improve the gauge a
tion also on large 
u
tuations. In[8℄ it was pointed out that for an appropriately 
hosen renormalization grouptransformation one �nds a FP a
tion with short intera
tion range and smallviolations of rotational symmetry in the stati
 quark-antiquark potential evenat shortest distan
es. This was shown by means of the stati
 potential at �nitetemperature using FP Polyakov loops in the linear approximation. The remain-ing rotational symmetry violations in the potential were suspe
ted to originatefrom the missing dire
t intera
tion between diagonally separated links in thatformer parametrization of the FP a
tion given in [8℄. The new parametriza-tion presented in this work in
ludes su
h intera
tion terms, whi
h are 
ertainlypresent in the true FP a
tion, and thus is expe
ted to show even less viola-tions of rotational invarian
e in the potential as observed before. Our intentionfor measuring the stati
 quark-antiquark potential is however not to test therotational invarian
e, but rather aims at the determination of r0 and �.4.2.1 The stati
 potentialIt is well known that the stati
 quark-antiquark potential in latti
e gauge theoryis related to the expe
tation value of the re
tangular Wilson loop W(R; T ) viahW(R; T )i � e�V (R)T (4.1)for large T . Here, R and T denotes the spatial and temporal extent of theWilson loop, respe
tively. One 
an interpret the expe
tation value of a Wilsonloop pi
torially as the 
reation of a quark-antiquark pair at time t = 0 at pointx = R=2, separating instantaneously to x = R and x = 0 and then evolving fortime T until it annihilates. Thus the potential 
an be determined in prin
ipleby 
al
ulating the limit V (R) = limT!1� 1T lnhW(R; T )i: (4.2)In (pure) latti
e gauge theory the potential is expe
ted to 
on�ne quarks and,more pre
isely, to grow linearly for large separations,limR!1V (R) � �R; (4.3)where � is the so 
alled string tension. This area law behaviour of the Wilsonloop is 
on�rmed in every order of a systemati
 strong 
oupling expansion for� [57, 58℄. Per 
ontra, from asymptoti
 freedom one expe
ts a Coulomb-likeintera
tion V (R) � �=R of the quark-antiquark pair at short distan
es. There-fore, a simple ansatz des
ribing (phenomenologi
ally) a stati
 quark-antiquarkpotential, simultaneously exhibiting 
on�nement and asymptoti
 freedom is theCornell potential [59℄, V (R) = V0 + �R + �R: (4.4)For the understanding of 
on�nement the ability to 
al
ulate the potentialnon-perturbatively is 
ru
ial. At present the only non-perturbative 
al
ulation
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aling properties of the FP a
tionof the quark-antiquark potential is by determining the expe
tation value of theWilson loop numeri
ally in Monte Carlo simulations. For all pra
ti
al purposes,one is restri
ted to �nite R and T and the relative errors of the Wilson loopexpe
tation values in
rease exponentially with temporal extension T . To redu
ethese statisti
al 
u
tuations one 
an use thermally averaged temporal links [60℄,but it is even more vital to enhan
e the overlap with the physi
al ground stateof the system. This 
an be a
hieved by invoking for instan
e iterative spatialsmearing te
hniques (see e.g. [61℄). The te
hniques whi
h we use are des
ribedin detail in se
tion 4.2.3.4.2.2 Determination of the spatial s
aleAn important part of any latti
e simulation is the determination of a physi
als
ale in order to 
onvert quantities measured on the latti
e into physi
al units.This 
an be a

omplished by 
hoosing one physi
al quantity as a referen
e s
ale.Any quantity whi
h 
an be easily and a

urately determined numeri
ally onthe latti
e as well as experimentally will do. A typi
al referen
e quantity inlatti
e gauge theories is the mass of a low-lying hadron, however, in pure gluon-dynami
s we have to resort to a purely gluoni
 quantity (whi
h, nevertheless,should be de�ned in full QCD as well). As outlined in se
tion 3.4 the 
riti
altemperature T
 of the de
on�nement phase transition is su
h a referen
e s
ale.More easily a

essible is the determination of the s
ale through the stati
 quark-antiquark potential, where one refers to the string tension � to set the s
ale.Nevertheless, this method is plagued by two major diÆ
ulties: �rstly and mostimportantly, the noise/signal ratio be
omes large in the region where one needsan a

urate determination of the potential, 
f. eq. (4.1) and (4.3). In addition,due to the fa
t that the ex
ited string has a small energy gap at large distan
esR,the ground state be
omes diÆ
ult to resolve with standard methods. Se
ondly,and less importantly, the string tension is not well de�ned in full QCD due tostring breaking.To 
ir
umvent these problems a hadroni
 s
ale r
 was introdu
ed [62℄ throughthe for
e F (r) between stati
 quarks in the fundamental representation at inter-mediate distan
es 0:2 fm � r � 1:0 fm, where we have best information availablefrom phenomenologi
al potential models [59, 63℄. The advantages of this 
hoi
eare manifold: the s
ale is de�ned pre
isely both in pure gauge theory and in fullQCD and it 
an be determined well numeri
ally with good statisti
al pre
ision.This quantity is therefore regarded to be te
hni
ally more appropriate than thestring tension to �x the s
ale. We haver2
V 0(r
) = r2
F (r
) � 
; (4.5)where originally [62℄ 
 = 1:65 was 
hosen yielding a value r
 � r0 ' 0:49 fm =(395MeV)�1 from the potential models.However, also this alternative way of setting the s
ale is hampered by somedrawba
ks as will be pointed out in se
tion 4.3.2. Firstly, there is no 'unique'method for 
al
ulating the derivative in eq. (4.5). For example, one 
an use theansatz in eq. (4.4) for interpolating the potential either lo
ally around r
 only,or globally by in
luding as many potential values as possible. In addition, thepossibility of 
hoosing di�erent points r
 for determining the for
e in (4.5) in-trodu
es ambiguities whi
h are beyond the statisti
al un
ertainties, parti
ularly
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aling of the stati
 quark-antiquark potential 45on 
oarse latti
es, and indeed, measurements of r0 from several groups di�ersigni�
antly from ea
h other1. It is therefore fair to say, that, sin
e the ambigu-ities be
ome negligible on �ne latti
es, r0 is an appropriate s
ale for performing
ontinuum limit extrapolations from �ne latti
es, however, its use on 
oarse lat-ti
es with a � 0:1 fm is questionable, espe
ially when an a

ura
y level of lessthan 2% is required.In order to estimate the systemati
 ambiguities we have determined r0 fromglobal �ts to the potential as well as from lo
al �ts using di�erent values of r
and 
. Referring to pre
ision measurements of the low-energy referen
e s
alein quen
hed latti
e QCD with the Wilson a
tion [64, 65, 66℄ we have 
olle
tedvalues for 
 and r
 in table 4.1. These are the values whi
h we use for ther
=r0 
0.662(1) 0.891.00 1.651.65(1) 4.002.04(2) 6.00Table 4.1: Parameter values for the determination of the hadroni
 s
ale througheq. (4.5). The numbers in the �rst line and in the two last lines are fromhigh-statisti
s measurements of the stati
 q�q-potential using the Wilson a
tion[66, 65℄.determination of the spatial s
ale, but unfortunately they already in
orporatesome of the systemati
 ambiguities dis
ussed above.4.2.3 Simulation detailsWe performed simulations with the FP a
tion at six di�erent �-values, of whi
hthree 
orrespond to the 
riti
al 
ouplings determined in 
hapter 3. Con�gu-rations were updated by 
ombining a Metropolis sweep with an overrelaxationsweep a
ting on SU(2) subgroups. The spatial extent of the latti
es were 
hosento be at least � 1:5 fm, based on observations in [66, 67℄2. We measured the
orrelation matrix of Wilson loops after every se
ond or �fth updating sweep,
f. the run parameters in table 4.2 where we list the values of the 
ouplings,the latti
e volumes and sizes together with numbers relevant for the obtainedstatisti
s.In order to enhan
e the overlap with the physi
al ground state of the po-tential we exploited smearing te
hniques. The operators whi
h we measuredin the simulations are 
onstru
ted using the spatial smearing of [61℄. Thesmoothing of the spatial links has the e�e
t of redu
ing ex
ited-state 
ontam-inations in the 
orrelation fun
tions of the Wilson loops in the potential mea-surements. The smoothing pro
edure we use 
onsists of repla
ing every spatial1See for example the 
olle
tion of data from measurements with the Wilson a
tion in [64℄.2Within their statisti
al errors (' 1%) the authors of [66, 67℄ do not observe any �nitesize e�e
ts a�e
ting the potential values on varying the spatial latti
e extent between L = 0:9fm and L = 3:3 fm. On the other hand, the authors of [65℄ observe signi�
ant �nite volumee�e
ts on the 1 - 1.5 % level for the string tension � on latti
es as large as L = 1:7 fm, whiler0 is mu
h less a�e
ted.
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aling properties of the FP a
tion� latti
e volume latti
e size [fm℄ # bins bin size # meas./bin3.400 144 1.45 43 180 903.150 124 1.61 42 500 502.927 144 2.39 40 200 402.860 104 1.84 43 180 902.680 124 2.72 51 200 402.361 124 4.02 57 200 40Table 4.2: Run parameters for the simulations of the stati
 quark-antiquark po-tential. Values for the 
oupling, the latti
e volumes and sizes are listed togetherwith 
hara
teristi
 numbers for the obtained statisti
s.link Uj(n); j = 1; 2; 3 by itself plus a sum of its neighboring spatial staples andthen proje
ting ba
k to the nearest element in the SU(3) group3:S1Uj(x) � PSU(3)nUj(x) + �sXk 6=j(Uk(x)Uj(x + k̂)U yk(x+ ĵ) (4.6)+U yk(x � k̂)Uj(x � k̂)Uk(x� k̂ + ĵ))o:Here, PSU(3)Q denotes the unique proje
tion onto the SU(3) group elementW , whi
h maximizes ReTr(WQy) for any 3 � 3 matrix Q. The smeared andSU(3) proje
ted link S1Uj(x) retains all the symmetry properties of the origi-nal link Uj(x) under gauge transformations, 
harge 
onjugation, re
e
tions andpermutations of the 
oordinate axes. The whole set of spatially smeared links,fS1Uj(x); x�L4g, forms the spatially smeared gauge �eld 
on�guration. An op-erator O whi
h is measured on a n-times iteratively smeared gauge �eld 
on�g-uration is 
alled an operator on smearing level Sn, or simply SnO. In the simu-lation of the stati
 �qq-potential we used smearing levels Sn with n = 0; 1; 2; 3; 4.The smearing parameter was 
hosen to be �s = 0:2 in all 
ases.The 
orrelation matrix of spatially smeared Wilson loops are 
onstru
ted inthe following way4. At �xed t we �rst form smeared string operators along thethree spatial axes, 
onne
ting ~x with ~x+Rî,SnVi(~x; ~x+Rî; t) =SnUi(~x; t)SnUi(~x + î; t) : : :SnUi(~x+ (R� 1)̂i; t); i = 1; 2; 3; (4.7)and unsmeared temporal links at �xed ~x, 
onne
ting t with t+ T ,V4(t; t+ T ; ~x) = U4(~x; t)U4(~x; t+ 1) : : : U4(~x; t+ (T � 1)): (4.8)3The SU(3) proje
tion is done by applying SU(2) subgroup proje
tions.4Note that we are 
on
erned with a 5 � 5 
orrelation matrix in the 
ase where we usesmearing levels Sn with n = 0; 1; 2; 3; 4.
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 quark-antiquark potential 47The smeared Wilson loop5 is then obtained by 
al
ulatingWlm(R; T ) =X~x;t 3Xi=1 TrSlVi(~x; ~x+Rî; t)V4(t; t+ T ; ~x+Rî)SmV yi (~x; ~x+Rî; t+ T )V y4 (t; t+ T ; ~x); (4.9)and �nally we de�ne the 
orrelation matrix a

ording toClm(R; T ) = hWlm(R; T )i = Cml(R; T ); (4.10)where the average is estimated by means of the Monte Carlo simulation. In thefollowing the 
orrelation matri
es are analyzed using variational te
hniques asdes
ribed in the subsequent se
tion.4.2.4 Analysis details and resultsIn order to extra
t the physi
al s
ale through equation (4.5) we need an inter-polation of the potential and 
orrespondingly the for
e between the quarks forarbitrary distan
es r not restri
ted to integers 
orresponding to the latti
e sites.This interpolation of V (r) is a
hieved by �tting a potential of the form (4.4) tothe measured potential values. We use this simple ansatz in order to 
al
ulatethe for
e (derivative of V ) in eq. (4.5). The potential 
an be very well des
ribedwith this ansatz, but of 
ourse we do not 
laim that it has exa
tly this form.We employ a two step pro
edure for the �tting: First we extra
t the poten-tial values V (r) for ea
h r separately using the variational te
hniques des
ribedin se
tion D.1. This method also gives a linear 
ombination of the string op-erators SnV; n = 0; : : : ; 4, whi
h proje
ts suÆ
iently well to the ground stateof the string, i.e. eliminates the 
losest ex
ited string states. Based on e�e
-tive masses and on a �2-test taking all temporal 
orrelations into a

ount asdes
ribed in se
tion D.2 we 
hoose a plateau region from tmin to tmax wherewe �t the exponential form Z(r) exp(�tV (r)) to the ground state 
orrelator,
arefully 
he
king the stability of the �t under variation of the �t parameters.The results of these �ts are 
olle
ted in table F.2 in appendix F, where we listthe plateau regions (�t range), the extra
ted potential values V (r) and the �2per degree of freedom, �2=NDF. The un
ertainties in the extra
ted values forV (r) are 
al
ulated using a non-parametri
 bootstrap method.On
e we have determined a suitable plateau region for ea
h r we performthe se
ond step by �tting the expression Z(r) exp(�t(V0 + �=r + �r)) dire
tlyto the 
orrelation matri
esWlm(r; t) proje
ted to the ground state of the string,simultaneously for all r and the previously 
hosen t-values. This step allowsto take into a

ount all 
orrelations among the 
orrelation matrix elements forboth di�erent r and t by using a �2-fun
tion with the 
orresponding 
ovarian
ematrix. The �t range in r is 
hosen by 
arefully examining the �2-fun
tionand the stability of the �tted parameters aV0; � and �a2, while keeping the �tranges in the t-values �xed for ea
h r separately. Again, the quoted errors areestimated through the 
u
tuations of the �t parameters and all other indire
tly
al
ulated quantities like r0=a determined from the 
-values in table 4.1, on5Let us remark that we measure the on-axis potential only, i.e. Wilson loops having spatialextent in the dire
tion of the latti
e axes î; i = 1; 2; 3 only.
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aling properties of the FP a
tion500 bootstrap samples. The results of the global �ts are tabulated in table 4.3,where we quote the �t range in r, the parameters aV0; �; �a2 together with theirerrors for all �-values. The non-monotoni
 variation of � = �(�) shows 
learly,that � and �a2 are e�e
tive �t parameters. The last 
olumn quotes the �2 perdegree of freedom, �2=NDF.� �t range aV0 � �a2 �2=NDF3.400 2 - 6 0.7805(7) -0.251(9) 0.0629(13) 1.023.150 2 - 5 0.820(15) -0.285(20) 0.0992(27) 0.752.927 2 - 6 0.812(16) -0.272(20) 0.1606(33) 1.352.860 1 - 4 0.8007(48) -0.2623(33) 0.1885(17) 1.172.680 1 - 4 0.7766(52) -0.2547(37) 0.2871(15) 0.432.361 1 - 4 0.615(11) -0.1791(78) 0.6286(37) 0.99Table 4.3: Results from global 
orrelated �ts of the form (4.4) to the stati
quark potentials. The se
ond 
olumn indi
ates the �t range in r and the last
olumn �2 per degree of freedom, �2=NDF.Having at hand an interpolation of the stati
 potential for ea
h �-value,we are able to determine the hadroni
 s
ale r0 in units of the latti
e spa
ingthrough eq. (4.5). The value of 
 is 
hosen appropriate to the 
oarseness of thelatti
e and the �t range in r. In table 4.4 we list the �nal results and the errorstogether with the value of 
 from whi
h r0=a is 
al
ulated.� N� r0=a 
3.400 4.81(3) 0.893.150 3.71(3) 1.652.927 4 2.93(1) 1.652.860 2.713(9) 1.652.680 3 2.205(3) 1.652.361 2 1.494(3) 4.00Table 4.4: Results for the hadroni
 s
ale r0=a from 
orrelated �ts of the form(4.4) to the stati
 quark-antiquark potentials. The last 
olumn indi
ates thevalue of 
 (
f. table 4.1) from whi
h r0=a is determined through eq. (4.5).As mentioned in the introdu
tion to this se
tion, the stati
 �qq-potential is animmediate, non-trivial and e�e
tive test of s
aling. Sin
e both the ratios r=r0and r0V are RG invariant, one expe
ts the potentials expressed in terms of thehadroni
 s
ale as a fun
tion of r=r0 to lie on top of ea
h other after subtra
tingan unphysi
al 
onstant. This 
onstant in the potential is �xed through the
onvention that V (r0) = 0 for ea
h potential. The resulting potential values aredisplayed in �gure 4.1. If we also plot the �ts to the potential values we observethat the 
urves 
an s
ar
ely be distinguished from ea
h other. Therefore we onlydraw one single 
urve (dashed line) obtained by a simultaneous �t to all the datarespe
ting the previously 
hosen �t ranges in r. The 
urve serves to guide theeye and shows the fun
tion (4.4) appropriately res
aled and normalized.It is also useful to know how r0=a s
ales with �. Then
e we parametrize the
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Figure 4.1: S
aling of the stati
 �qq-potential V (r) expressed in terms of thehadroni
 s
ale r0. The unphysi
al 
onstant r0V (r0) has been subtra
ted forea
h latti
e spa
ing so that the 
urves all have the same value at r=r0 = 1. Thedashed line is drawn to guide the eye and shows a �t of the data to the fun
tion(4.4) appropriately res
aled and normalized.
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aling properties of the FP a
tionresults in terms of a smooth fun
tion of � in order to provide an interpolatingformula for r0=a at arbitrary values of � in the interval 2:361 � � � 3:4, thereby
he
king for the onset of asymptoti
 s
aling. The leading universal behaviour ofthe solution of the renormalization group equation for the bare 
oupling yieldsa=r0 = Ae�1=(2b0g20)(b0g20)�b1=(2b20)(1 +O(g20)); (4.11)where b0 = 11=(4�)2 and b1 = 102=(4�)4 are the universal one- and two-loop
oeÆ
ients in the perturbation expansion of the �-fun
tion and A is relatedto the �-parameter. O(g20) indi
ates non-universal 
ontributions from higherorder terms. Therefore, from the leading behaviour (a=r0) � exp(��=(12b0))with � = 6=g20, we infer a phenomenologi
al des
ription of ln(a=r0) in terms ofa polynomial, ln(a=r0) = pXk=0 ak(� � 3)k: (4.12)We obtain a good des
ription of the data already with p = 2 for whi
h we plotthe resulting 
urve together with the data points in �gure 4.2. The deviationsof the 
urve from the data is at least one order of magnitude smaller than thestatisti
al error. The parameters of the p = 2 and p = 3 polynomial are givenin table 4.5 and 
an dire
tly be 
ompared to analogous formulas for the Wilsona
tion [65, 64℄. Note the smallness of the higher order 
oeÆ
ients in our �ts.p = 2 p = 3a0 -1.1539(18) -1.1536(31)a1 -1.0932(68) -1.0925(97)a2 0.132(11) 0.129(29)a3 -0.005(51)�2=NDF 0.20 0.29Table 4.5: Parameters of the phenomenologi
al des
ription of ln(a=r0) in termsof a polynomial of order p = 2 and p = 3, r0=a from table 4.4 as determinedfrom global �ts. p = 2 p = 3a0 -1.1622(24) -1.1615(34)a1 -1.0848(95) -1.082(13)a2 0.156(17) 0.146(39)a3 0.020(70)�2=NDF 1.31 1.92Table 4.6: Parameters of the phenomenologi
al des
ription of ln(a=r0) in termsof a polynomial of order p = 2 and p = 3 for the values of r0=a obtained fromlo
al �ts, table 4.9.When using the interpolating formula one should in
lude a relative un
er-tainty of 0:2% at � = 2:361 growing linearly to 0:6% at � = 3:40 and 
orre-sponding roughly to the statisti
al a

ura
y of the data6.6Note, that we did not take into a

ount the un
ertainty in the determinations of r0=a
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Figure 4.2: The measured data points of ln(a=r0) (
ir
les) and their phenomeno-logi
al des
ription in terms of a polynomial quadrati
 in � (solid line). Theplotted points are the values of r0=a from the lo
al �ts.



52 Chapter 4. S
aling properties of the FP a
tionLet us �nally draw the 
on
lusion that the potential data measured with theFP a
tion shows ex
ellent s
aling behaviour over the whole region of r=r0 andfor all values of � investigated. We also observe a smooth and nearly exponential
hange of the hadroni
 s
ale under variation of the gauge 
oupling. Of 
ourse,these statements are moderated by the fa
t that the potential itself does notpossess a lot of stru
ture and, indeed, a ni
e s
aling of the potential is alsoobserved for the Wilson gauge a
tion, at least above �W � 6:0. Already a 
rudeand non-elaborated determination of r0=a is enough to observe ni
e s
alingbehaviour. Although the s
aling of the potential provides a �rst non-trivial testand a 
onsisten
y 
he
k for the FP a
tion, further tests are ne
essary.4.3 S
aling of the 
riti
al temperature and r0p�To further study the s
aling properties of the FP a
tion we examine renormal-ization group invariant 
ombinations of physi
al quantities like r0T
, T
=p�and r0p�. The �rst two are 
ombinations of two 
ompletely independentlydetermined quantities and therefore provide a highly non-trivial s
aling test ofthe FP a
tion and allow in prin
iple to quantify latti
e artifa
ts. In parti
u-lar r0T
 provides a high pre
ision s
aling test where the Wilson a
tion showss
aling violations of the order of 4% at N� = 4, but already less than 1:5% atN� = 6. Therefore it requires a very pre
ise determination of the referen
e s
aler0. The third 
ombination, r0p�, is made of two quantities whi
h are both 
al-
ulated from the stati
 quark-antiquark potential and therefore are expe
ted tobe strongly 
orrelated. Nevertheless, sin
e the quantities are determined ratherindependently as we will see below, it still provides a non-trivial s
aling test.In this se
tion we present and dis
uss the results for the FP a
tion and
ompare them to results obtained from the Wilson a
tion and di�erent improveda
tions whenever it is possible. A 
omplete and detailed 
olle
tion of the dataobtained with the FP a
tion is given in appendix F.4.3.1 T
=p�Let us �rst look at the ratio T
=p�, the de
on�ning temperature in terms ofthe string tension7. In �gure 4.3 we 
ompare the results from the FP a
tionwith data obtained from simulations with di�erent other a
tions.The range of N� -values for the 
al
ulations with the standard plaquette a
-tion and the a

ura
y, with whi
h the string tension is determined, is impressiveand gives 
lear eviden
e for the 
ontinuum value of the de
on�ning temperaturein units of the string tension. In table 4.7 we 
olle
t all available 
ontinuum ex-trapolations together with the results for the FP a
tion. The data obtained withthe Wilson a
tion is taken from [49℄ where they use the T
 values at N� = 4and 6 from [47℄ and extrapolate �nite volume data for T
 at N� = 8 and 12from [47℄ to in�nite volume. For the value of p� they use the string tensionparametrization given in [65℄. The data for the 1� 2 tree level improved a
tionstemming from di�erent values of 
 in formula (4.5). This will be dis
ussed in detail in se
tion4.3.2.7We do not 
laim that the quantity � is the string tension, but rather follow the atti-tude 
ommonly adopted in the literature whi
h denotes the quantity � obtained from 3 or 4parameter �ts to the stati
 potential as the string tension.



4.3. S
aling of the 
riti
al temperature and r0p� 53a
tion � T
=p�FP a
tion 2.927 0.624(7)2.680 0.622(8)2.361 0.628(11)Wilson [49℄ 1 0.630(5)1� 2 [49℄ 1 0.634(8)DBW2 [68℄ 1 0.627(12)Iwasaki [42℄ 1 0.651(12)Bliss [69℄ 1 0.659(8)Table 4.7: Results of the de
on�ning temperature in units of the string ten-sion obtained with the FP a
tion and 
ontinuum values from di�erent othera
tions. For 
ompleteness we also in
lude the value by Bliss et al. [69℄ from atree level and tadpole improved a
tion. All 
ontinuum extrapolations are froma reanalysis by Teper [70℄.is again taken from [49℄. The data denoted by RG improved a
tion is obtainedwith the Iwasaki a
tion [71℄ and is taken from [42℄. Finally we also quote theresults from the QCD-TARO 
ollaboration [68℄ obtained with the DBW2 a
-tion8. The extrapolation of the Wilson, the DBW2 and the Iwasaki data to the
ontinuum is from [70℄ where a 
areful reanalysis is done.Let us make the following remarks in order to judge the results. Sin
e forthe determination of the string tension one is interested in the long distan
ebehaviour of the potential one usually follows the strategy to �x the Coulomb-like term in the �t-ansatz9, i.e. to perform two-parameter �ts in aV0 and �a2only. In addition one in
ludes the o�-axis potential values and 
orre
ts fordistortion e�e
ts at short distan
es due to missing rotational invarian
e eitherby in
luding the e�e
ts of the tree level one-gluon ex
hange in the for
e whenworking with the Wilson a
tion [62, 64℄ and by systemati
ally in
reasing thelower bound of the �tting range.In 
ontrast to this elaborated pro
edure we followed a mu
h simpler ap-proa
h. As des
ribed above we simply perform �ts to the on-axis potentialvalues only and therefore we are limited to small variations of the �tting range.Nevertheless, the values of � obtained in this way and quoted in table 4.3 arestable and vary only within their statisti
al errors over the whole set of sensibly
onsidered �t ranges. However, the error on � 
hanges 
onsiderably, i.e. up toa fa
tor of 5, depending on whether distan
e r = 1 is taken into a

ount or not.Just to play safe we negle
t distan
e r = 1 in the �ts, even if the �2 would allowit, to obtain the following 
onservative values10:These are the values whi
h are displayed in �gure 4.3 together with the dataas mentioned above. Our data is 
ompatible within one standard deviation withthe 
ontinuum extrapolation of the Wilson data and we observe s
aling of theFP a
tion within the statisti
al errors over the whole range of 
oarse latti
es
onsidered 
orresponding to values of N� = 2; 3 and 4. Nevertheless, to make8DBW2 means "doubly blo
ked from Wilson in two 
oupling spa
e".9For large distan
es the 
oeÆ
ient of this term is expe
ted to be determined by string
u
tuations, � = ��=12.10The details of the 
orresponding �ts 
an be found in the appendix.
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aling properties of the FP a
tionN� 4 3 2� 2.927 2.680 2.361�a2 0.161(3) 0.286(7) 0.634(22)T
=p� 0.624(7) 0.622(8) 0.628(11)Table 4.8: Values for � and T
=p�.a more rigorous statement and a more stringent 
he
k of the s
aling of the FPa
tion it is 
ertainly ne
essary to in
lude o�-axis potential values in order to
he
k more reliably the stability of � under variation of the �t range.
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Figure 4.3: T
=p� vs. 1=N2� for di�erent a
tions. See text for details.4.3.2 r0T
As was already pointed out by several authors [62, 65℄ there are 
learly draw-ba
ks to using the string tension to set the s
ale. This is �rst of all due tothe fa
t that, sin
e the string tension is a long-distan
e quantity, one needs thepotential in a regime where the relative errors usually are getting large, andse
ondly, however less important for our purposes, the string tension is not wellde�ned in full QCD. To avoid these problems a new way to set the s
ale viathe for
e between a heavy quark and antiquark was introdu
ed [62℄ in order tode�ne an intermediate distan
e s
ale r0. This se
tion will therefore deal withthe RG invariant quantity r0T
, so as to provide a high pre
ision s
aling test ofthe FP a
tion and to size the remaining latti
e artifa
ts.
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aling of the 
riti
al temperature and r0p� 55Unfortunately, pre
ise determination of r0=a is missing in the literature ex-
ept for the Wilson a
tion [65, 64℄ and, unlike to T
=p�, we are not able to
ompare our data to other a
tions su
h as the Iwasaki, DBW2 or the 1 � 2tree level improved a
tion. Indeed, the determination of r0=a is a deli
ate issueand systemati
 e�e
ts due to di�erent methods of 
al
ulating the for
e 
an besizeable. Due to the fa
t that extra
ting the derivative of the potential from adis
rete set of points is not unique, the intrinsi
 systemati
 un
ertainty is notnegligible at intermediate and 
oarse latti
e spa
ings a � 0:15 fm. For example,in an a

urate s
ale determination of the Wilson gauge a
tion in [65℄ the authorsquote a value of r0=a = 2:990(24) at �W = 5:7. This is to be 
ompared withthe pre
ision 
omputation of the s
ale with the same a
tion in [64℄ where theauthors obtain r0=a = 2:922(9) at the same �-value. In view of the 
laim in [65℄to have in
luded all systemati
 errors and the high relative a

ura
y (� 0:3%)of the data in [64℄, this systemati
 di�eren
e on the 2 � 3% level is a seriousmatter. Even on �ne latti
es there are large dis
repan
ies: at �W = 6:2 theauthors of [64℄ obtain r0=a = 7:38(3), while in [72℄ a value of r0=a = 7:29(4) isquoted.In that sense our results 
on
erning r0T
 have to be taken with great 
are.Although our determination of r0=a as des
ribed in se
tion 4.2.4 yields ni
es
aling behaviour of the potential and ex
ellent asymptoti
 s
aling behaviourof r0=a itself, this is rather a proof of our ability to 
onsistently and systemat-i
ally extra
t the s
ale for all simulations performed. For the use of r0=a as aquantity to test and 
ompare s
aling violations in r0T
 we need a more a

uratedetermination of r0=a as is a

essible to us at the moment.Nevertheless, we try to follow the pro
edure proposed in [62, 64℄ as 
lose aspossible. First we perform 
orrelated �ts of the 
orrelation matrix elements tothe form Z(r) expf�(V0 + �=r + �r)tg as des
ribed in se
tion 4.2.4, but onlylo
ally, i.e. using data between some rmin and rmax 
lose to r
. Then thefor
e is interpolated to arbitrary values of r from these lo
al �ts and �nallyr
=a (and a

ordingly r0=a) is determined from the relation (4.5). In order toestimate the systemati
 errors we 
al
ulate r0=a from di�erent small �t rangesand, 
orrespondingly, di�erent values of 
 from table 4.1. Then the resultsare 
ombined with a weight depending on the error of the quantity11. The�nal results for r0=a are listed in table 4.9 where the �rst error denotes thestatisti
al error. The se
ond is the estimate of the systemati
 error and marksthe minimal and maximal value of r0=a obtained with di�erent �t ranges anddi�erent reasonably 
hosen values of 
. The systemati
 error stemming fromdi�erent determinations of the potential values is not taken into a

ount. Forlater referen
e we also determined r0=a for � = 3:40; 3:15 and � = 2:86. Intable 4.10 we 
olle
t the data for r0T
 from our measurements with the FPa
tion together with the data from measurements with the Wilson a
tion for
omparison. The 
riti
al 
ouplings 
orresponding to N� = 4; 6; 8 and 12 aretaken from [49℄ while the values for r0=a are from the interpolating formula in[64℄. The quoted errors are purely statisti
al. The 
ontinuum value is our ownextrapolation obtained by performing a �t linear in the leading 
orre
tion term1=N2� . The data point at N� = 4 was dis
arded from the �t. Finally, the valuesare plotted in �gure 4.4 for 
omparison.11In addition one 
ould also take into a

ount the �2-value of the 
orresponding �t as isdone in [65℄.
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Figure 4.4: r0T
 vs. 1=N2� for the Wilson and the FP a
tion. The empty 
ir
lesrepresent data from measurements with the Wilson a
tion and the �lled squaresdenote the results obtained with the FP a
tion.



4.3. S
aling of the 
riti
al temperature and r0p� 57� r0=a3.400 4:833(39)(+18�22 )3.150 3:717(23)(+19�50 )2.927 2:969(14)( +5�14 )2.860 2:740(10)(+17�31 )2.680 2:237(7)(+11�33 )2.361 1:500(5)(+29�14 )Table 4.9: The hadroni
 s
ale r0=a determined from lo
al �ts to the potential.The �rst error denotes the statisti
al error and the se
ond is the estimate of thesystemati
 error. The results for � = 3:40; 3:15 and � = 2:86 are quoted forlater referen
e. N� Wilson a
tion FP a
tion2 0.750(3)3 0.746(3)4 0.719(2) 0.742(4)6 0.739(3)8 0.745(3)12 0.746(4)1 0.750(5)Table 4.10: Results for the 
riti
al temperature in terms of the hadroni
 s
ale,r0T
, from measurements with the Wilson a
tion and the FP a
tion.The Wilson a
tion shows s
aling violation for r0T
 of about 4% at N� = 4,while atN� = 6 it is already smaller than about 1:5%. In that sense this quantityprovides a high pre
ision s
aling test and thus a very a

urate 
omputation ofthe low-energy referen
e s
ale r0=a on the 0:5% level is of 
ru
ial importan
e.The la
k of data for di�erent a
tions is an indi
ation that this is indeed a diÆ
ulttask. Although the required statisti
s is in prin
iple a

essible to us, we donot have full 
ontrol over the systemati
 ambiguities in the 
al
ulation of r0=aon the required a

ura
y level. Nevertheless we observe in prin
iple ex
ellents
aling within 1% or two standard deviations for the FP a
tion even on 
oarselatti
es 
orresponding to N� = 3 and 2, however, this statement is moderated inview of the large systemati
 un
ertainties. The systemati
 e�e
ts are generatedby di�erent methods of extra
ting the potential values, di�erent pro
edures ofinterpolating and 
al
ulating the for
e, di�erent 
hoi
es of �t ranges et
.One way around the 
aveat is to repeat the same measurements and exa
tlythe same analysis independently for measurements with the Wilson a
tion inorder to rule out these systemati
 e�e
ts and to reliably dete
t and to 
ompares
aling violations for both a
tions. In any 
ase further studies on the deter-mination of r0=a are 
learly ne
essary in order to fully gain 
ontrol over allpossible sour
es of systemati
 errors. Unfortunately this is beyond the s
ope ofthe present work.
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aling properties of the FP a
tion4.3.3 r0p�As a byprodu
t of the analysis in the previous two se
tions we 
an now lookat another RG invariant produ
t, namely r0p�. This quantity is not a

essiblefrom the global �ts to the potential performed in se
tion 4.2.4 sin
e then p�aand r0=a are determined from the same des
ription or parametrization of thepotential data and thus are strongly 
orrelated. This is no longer the 
ase afterthe previous analysis, where � is determined from the long range properties ofthe potential while r0 is 
al
ulated from lo
al �ts only where the pre
ise formof the �tting ansatz is irrelevant.In table 4.11 we have 
olle
ted the resulting values of r0p� when r0=a istaken from table 4.9 and �a2 from table 4.8. We also list the results fromthe potential measurements at the three additional �-values � = 2:86; 3:15 and3.40. We 
an extrapolate to the 
ontinuum either by performing a �t linearin (a=r0)2 or by �tting a 
onstant in order to obtain r0p� = 1:193(10) andr0p� = 1:193(6), respe
tively. For 
omparison we 
al
ulated the data for theWilson a
tion from the interpolating formula for r0=a in [64℄ and the stringtension parametrization in [65℄. The 
ontinuum extrapolation for the Wilsondata is from the analysis of Teper in [70℄.� r0p�FP a
tion2.361 1.194(21)2.680 1.196(15)2.860 1.190(23)2.927 1.191(12)3.150 1.185(16)3.400 1.198(12)1 1.193(10)Wilson a
tion5.6925 1.148(12)5.8941 1.170(19)6.0624 1.183(13)6.3380 1.185(11)1 1.197(11)Table 4.11: r0p� for the Wilson and the FP a
tion.Figure 4.5 shows the s
aling behaviour of r0p� for the Wilson a
tion (empty
ir
les) and the FP a
tion (�lled squares) as a fun
tion of (a=r0)2. The errorbars are purely statisti
al and are dominated by the un
ertainty from the stringtension. Therefore the systemati
 ambiguities possibly present in r0=a are notvisible within the shown error bars.The Wilson a
tion shows a s
aling violation of about 4% at � = 5:6925(N� =4), while no s
aling violation is seen for the FP a
tion even on latti
es as 
oarseas � = 2:361(N� = 2). We would like to emphasize again that this is a non-trivial result, sin
e r0=a and p�a are determined 
ompletely independent ofea
h other. However, with the data presently available to us it is diÆ
ult toextra
t the string tension with the a

ura
y needed to see a striking di�eren
e
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lusions and outlook 59to the Wilson a
tion for �-values 
orresponding to N� � 4. This is mainly dueto the la
k of measurements of the o�-diagonal potential values.

0.00 0.10 0.20 0.30 0.40 0.50
(a/r0)

2

1.10

1.15

1.20

1.25

r 0 
σ1/

2

Wilson action
FP action

Figure 4.5: S
aling behaviour of r0p� for the Wilson a
tion (empty 
ir
les) andthe FP a
tion (�lled squares). The s
ale on the x-axis is 
hosen for 
onvenien
e.4.4 Con
lusions and outlookIn this 
hapter the parametrized FP a
tion was subje
ted to several s
aling tests.By means of the stati
 quark-antiquark potential and the s
aling of r0T
; T
=p�and r0p� we have assured that the a
tion behaves well and shows no irregu-larities over the whole range of studied latti
e spa
ings. In all quantities underinvestigation we observe ex
ellent s
aling within the standard errors or 2 % evenon latti
es as 
oarse as a ' 0:2� 0:3 fm.One important out
ome of the studies in this 
hapter is, that the hadroni
s
ale r0=a introdu
ed by Sommer [62℄ and pursued by [64℄ is not appropriatefor latti
e spa
ings larger than around a ' 0:1 fm. The intention of the authorsto have a new way of setting the s
ale in a 
onsistent way without introdu
ingadditional latti
e artifa
ts is 
ertainly appre
iable. However, the s
ale in
orpo-rates large systemati
 ambiguities depending heavily on the te
hniques used forextra
ting it. This makes it nearly impossible to 
ompare the results of di�erentgroups reliably using r0=a at latti
es spa
ings around a ' 0:1 fm. In this regimeit seems more preferable to use the e�e
tive string tension � to set the s
ale.Regarding our 
al
ulations it would be desirable to measure the e�e
tivestring tension using o�-axis potentials in the future. As was already pointed out,
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aling properties of the FP a
tionthis would allow a more reliable determination of the physi
al s
ale, espe
iallyon 
oarse latti
es. In addition, one 
ould determine the potential gap � alongthe lines in [64℄ and 
he
k the s
aling behaviour of r0�jr0 . This quantity showslatti
e artifa
ts as large as 20% at �W = 5:8 and 12% at �W = 5:95.



Chapter 5Glueballs5.1 Introdu
tionThe ri
h stru
ture in the hadron spe
trum of QCD is expe
ted to reveal boundstates 
onsisting of (mainly) gluons, so 
alled glueballs. Unfortunately, 
al-
ulating the properties of su
h states dire
tly from �rst prin
iples using theQCD lagrangian proves to be a diÆ
ult task and standard perturbative meth-ods fail. One possibility is provided by numeri
al 
omputations using latti
eQCD and, indeed, glueball masses were among the �rst quantities to be 
al
u-lated on the latti
e. Most of these 
al
ulations have been done in the quen
hedapproximation1, mainly be
ause glueballs are the a
tual ex
itations in the puregauge se
tor. There also exist studies of e�e
ts from dynami
al sea quarks andglueball-meson mixing on the glueball spe
trum from the SESAM and T�L 
ol-laborations [72, 74, 75℄ and from the UKQCD 
ollaboration [76℄, however, theresults are not yet 
on
lusive [75℄.On the experimental side there is some eviden
e found in several experimentsfor the existen
e of exoti
 glueballs or hybrid parti
les 
onsisting of quarks withgluoni
 ex
itations. The exoti
 glueballs, sometimes 
alled "oddballs", have ex-oti
 quantum numbers, e.g. 0+�; 1�+, and are parti
ularly interesting in latti
egauge theory be
ause they 
an not mix with 
onventional meson states. Per
ontra, the glueballs with the lowest masses have 
onventional quantum num-bers. They are sitting in a dense ba
kground of 
onventional meson states andit is then
e diÆ
ult to distinguish them in an experiment. For further detailson the experimental aspe
t of the glueball spe
trum and possible glueball 
an-didates we refer to a re
ent arti
le [77℄ reviewing the light meson spe
trum.The main obsta
le in the 
omputations of glueball masses on the latti
e isthe fast de
ay of the signal in the 
orrelation fun
tions of the gluoni
 ex
itations,due to the fa
t that the glueball masses are relatively large (mG � 1:6 GeV). Itturns out to be notoriously diÆ
ult to extra
t the glueball masses before the sig-nal disappears in the relatively large noise of the measured 
orrelation fun
tionsand thus a small latti
e spa
ing a is required to follow the signal long enough.On the other hand, the physi
al latti
e volume should be larger than L � 1:21For 
omprehensive reviews of su
h 
al
ulations see [70℄ and [73℄.61



62 Chapter 5. Glueballsfm to avoid �nite size e�e
ts. This �nally results in a large L=a making it hardto obtain the statisti
s whi
h is usually required. One possible way around the
aveat is the use of anisotropi
 latti
e a
tions whi
h have a �ner resolution intime dire
tion, a� � a� , and then
e allow to follow the signal over a largerrange of time sli
es. Although this idea is not new [78℄, it has been revived onlyre
ently by Morningstar and Peardon [79, 80℄. Using an anisotropi
 improvedlatti
e a
tion they investigated the glueball spe
trum below 4 GeV in the pureSU(3) gauge theory and improved the determinations of the glueball masses
onsiderably 
ompared to previous Wilson a
tion 
al
ulations. Re
ent Wilsona
tion 
al
ulations 
omprehend works by the UKQCD 
ollaboration [81℄ andthe GF11 group [82, 83℄. It 
an be said that all three 
al
ulations are in rea-sonable agreement on the masses of the two lowest lying 0++ and 2++ glueballs.Despite this agreement Wilson a
tion 
al
ulations of the 0++ glueball mass,however, show huge latti
e artifa
ts of around 40 % at 
oarse latti
e spa
ingsa ' 0:15 fm and still 20 % even at modest latti
e spa
ings a ' 0:10 fm. Fromthis point of view the 0++ glueball mass is parti
ularly interesting, besidesits physi
al relevan
e, sin
e it provides an ex
ellent test obje
t on whi
h thes
aling behavior of di�erent a
tions 
an be 
he
ked and the a
hieved redu
tionof dis
retization errors 
an be sized. In this sense let us emphasize that ourintention here is twofold: �rstly, our 
al
ulation provides a new and independentdetermination of glueball masses using FP a
tions, and se
ondly, we aim at usingthe glueball spe
trum, in parti
ular the mass of the 0++ glueball, as anothers
aling test of the FP a
tion. Although we observe that the FP a
tion s
ales wellin quantities like r0T
; T
=p� or r0p�, latti
e artifa
ts 
ould be, in prin
iple,quite di�erent in other physi
al quantities, in parti
ular r0mG or mG=p�.A systemati
 determination of the glueball spe
trum is of 
ourse mu
h moreinvolved. For example it requires a 
areful di�erentiation of the single glueballstate from two-glueball and torelon-pair states having zero total momentum.The latter 
an rather easily be identi�ed through a �nite size s
aling study,sin
e the torelon mass is strongly dependent on the latti
e volume. In addition,su
h a study is needed to measure the systemati
 e�e
ts inherited in the resultsfrom �nite volume. Finally, after performing the 
ontinuum extrapolation onehas to reliably identify the 
ontinuum spin 
ontent of ea
h energy level. Su
h asystemati
 study is of 
ourse beyond the s
ope of the present work.This 
hapter is organized as follows. In se
tion 5.2 we �rst des
ribe the
onstru
tion of glueball operators from Wilson loops. This involves some grouptheory and provides a ni
e and pedagogi
al appli
ation of representation theory.In se
tion 5.3 we des
ribe the details of the simulations in
luding the generationof the gauge �eld 
on�gurations and the measurements of the operators. Theextra
tion of masses from the Monte Carlo estimates of glueball 
orrelationfun
tions are presented in se
tion 5.4 together with a dis
ussion of the s
aling.Finally, the main results are summarized in se
tion 5.5.5.2 Glueball operators from Wilson loopsIn this se
tion we des
ribe the 
onstru
tion of the operators measured in theglueball simulations. We �rst review the 
hara
terization of glueball states a
-
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ording to their transformation properties under irredu
ible representations ofthe rotation group following 
losely [84℄ and [85℄. Then we present the 
onstru
-tion of basis fun
tions of irredu
ible representations in general and later spe
ifyto operators transforming under the 
ubi
 group Oh. Some properties of the
ubi
 point group are summarized in appendix E.5.2.1 Glueball statesPhysi
al states in the Hilbert spa
e of latti
e gauge theory are gauge invariantand they 
an be obtained by applying gauge invariant operators to the puregauge va
uum. Of parti
ular interest in our simulations are spa
e-like Wilsonloops in the fundamental representation of SU(3). Sin
e we are aiming forthe determination of masses of glueball states, we are only 
onsidering zero-momentum states, i.e. translationally-invariant operators.In the 
ontinuum limit the Hamiltonian is rotationally invariant and itseigenstates 
an be 
hara
terized a

ording to the unitary representations of thegroup SU(2) in general, and to those of the three-dimensional rotation groupSO(3) for bosoni
 states in parti
ular. In addition the Hamiltonian is invariantunder parity and 
harge 
onjugation, and therefore the states 
an further be
lassi�ed a

ording to having eigenvalues P = �1 under parity and C = �1under 
harge-
onjugation parity, respe
tively. Thus we may label the eigenstatesof the Hamiltonian 
orresponding to glueball states with de�nite mass by j i =jJPCi, where J denotes the spin of the 
orresponding irredu
ible representationDJ of the rotation group.For �nite values of � we work on a hyper
ubi
 latti
e and 
ontinuous ro-tation symmetry is broken down to exa
t 
ubi
 symmetry. On the latti
e therole of the Hamiltonian is adopted by the transfer matrix. Then
e we are now
onsidering eigenstates of the transfer matrix, whi
h belong to an irredu
iblerepresentation of the 
ubi
 group O. Sin
e the 
ubi
 group is a subgroup ofSO(3), any representation DJ indu
es a representation on the group O, theso-
alled subdu
ed representation DOJ . In general, the subdu
ed representa-tion is no longer irredu
ible and 
an thus be de
omposed into the irredu
iblerepresentations �p of the 
ubi
 group O,DOJ = �1 � �2 � : : : : (5.1)In table 5.1 we list for 
onvenien
e the subdu
ed representations of the rota-tion group up to J = 6. The labeling of the irredu
ible representations of the
ubi
 group follows the standard notation, where one-dimensional representa-tions are denoted by A, two-dimensional irredu
ible representations by E andthree-dimensional irredu
ible representations by T .As a 
onsequen
e of this de
omposition the quintuplet of degenerate statesof a spin J = 2 parti
le in the 
ontinuum for example will be split up by thelatti
e regularization into a doublet and a triplet transforming under E and T2,respe
tively. The mass splitting between the two representations will disappearas we approa
h the 
ontinuum limit and full rotation symmetry is restored.On the other hand, every state in the latti
e theory transforming a

ordingto an irredu
ible representation �p of the 
ubi
 group 
an be expanded in the
ontinuum limit into eigenstates of spin J ,j�pi =XJ 
�pJ jJi: (5.2)



64 Chapter 5. Glueballs�p J = 0 1 2 3 4 5 6A1 1 0 0 0 1 0 1A2 0 0 0 1 0 0 1E 0 0 1 0 1 1 1T1 0 1 0 1 1 2 1T2 0 0 1 1 1 1 2Table 5.1: Subdu
ed representations of the rotation group up to J = 6. Givenare the multipli
ities with whi
h the representation �p 
an be found in thesubdu
ed representation DOJ . The labeling of the irredu
ible representations isexplained in the text.However, spin J 
an 
ontribute to this superposition only if �p is 
ontained inDOJ . Usually, the lowest spin 
ontained in �p belongs to the lowest mass. Nev-ertheless, a unique identi�
ation of glueball states on the latti
e with 
ontinuumspin states is possible only suÆ
iently 
lose to the 
ontinuum limit when di�er-ent representations in a given 
olumn of table 5.1 be
ome (nearly) degenerate.5.2.2 Constru
tion of basis fun
tions of irredu
ible repre-sentationsIn this se
tion we des
ribe the general pro
edure for 
onstru
ting basis fun
tionsof irredu
ible representations. This involves the 
hara
ter proje
tion operatorde�ned by Pp = dpg XT�G �p(T )�P (T ); (5.3)where p labels the irredu
ible representations �p of dimension dp of a �nite groupof 
oordinate transformations G of order g, �p(T ) being the 
hara
ter of T�Gin �p and P (T ) the unitary operator in the Hilbert spa
e L2 of the 
oordinatetransformation T�G.Pp has the property of proje
ting out of a fun
tion � �L2 the sum of all theparts transforming under �p. Having 
hosen a (normalizable) � su
h that Pp�is not identi
ally zero, we 
onstru
t P (T )(Pp�) for ea
h T�G. Ea
h of theseare linear 
ombinations of the dp basis fun
tions of �p. From these fun
tionswe abstra
t dp linearly independent fun
tions and apply the Gram-S
hmidt or-thogonalization to obtain a set of orthonormal basis fun
tions of the irredu
iblerepresentation.In pra
ti
e, given a non-zero Pp�, we 
onstru
t Pi P (Ti)(Pp�), wherePi P (Ti) is an appropriately 
hosen linear 
ombination of the unitary 
oor-dinate transformation operators. Then from this �rst basis fun
tion all othersare generated by applying appropriate rotation operators2. This pro
edure en-sures that ea
h set of basis fun
tions obtained from di�erent fun
tions �i �L2transform exa
tly in the same way under a given irredu
ible representation �p.2For details see se
tion E.3 in the appendix.
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ible representations of the 
ubi
 group onWilson loopsIn this se
tion we 
onstru
t the irredu
ible representations of the 
ubi
 groupOh on spa
e-like Wilson loops up to length eight. To make the 
onne
tion tothe 
onstru
tion presented before, let us note that the Wilson loops a
ting onthe va
uum state take over the role of the fun
tion � in the Hilbert spa
e L2 asintrodu
ed in the previous se
tion3.All prototypes of Wilson loop shapes up to length eight are displayed in�gure 5.1. Ea
h of these shapes is 
hara
terized by an L-tuple des
ribing thepath of the 
orresponding loop,(f̂1; : : : ; f̂L) with LXi=1 f̂i = 0; (5.4)where the f̂i are unit ve
tors 
orresponding to the spa
e-like 
oordinates. By[f̂1; : : : ; f̂L℄ we denote the equivalen
e 
lass of L-tuples whi
h are identi
al upto 
y
li
 permutations. Under C-parity we simply haveC[f̂1; : : : ; f̂L℄ = [�f̂L;�f̂L�1; : : : ;�f̂1℄; (5.5)and the 
ombinations[f̂1; : : : ; f̂L℄� = [f̂1; : : : ; f̂L℄� [�f̂L; : : : ;�f̂1℄ (5.6)are even and odd under the C-parity transformation, respe
tively. This 
or-responds to taking the real or the imaginary part of the Wilson loop under
onsideration.A (redu
ible) representationM of Oh on operators of a given �xed shape isnow de�ned throughMg [f̂1; : : : ; f̂L℄� := [Mgf̂1; : : : ;Mgf̂L℄�; 8 g�Oh; (5.7)whereMg is the matrix 
orresponding to the group element g in the fundamentalrepresentation. The representationM has dimension d, where d is the numberof di�erent spatial orientations of the given shape. In table 5.2 we have listedthe dimensions of the generated representations in
luding C-parity on everyloop shape.loop shape # 1 2 3 4 5 6 7 8 9 10 11dimension d 6 12 24 8 6 24 24 96 48 12 48loop shape # 12 13 14 15 16 17 18 19 20 21 22dimension d 24 12 24 6 12 12 48 12 48 24 96Table 5.2: Dimension d of the representation of Oh �C on the loop shapes, i.e.the number of di�erent orientations.3In parti
ular we have �[U ℄ = W [U ℄�va
[U ℄, where W [U ℄ is a Wilson loop built from gaugelinks U and �va
[U ℄ is the va
uum state invariant under appli
ations of the transfer matrix.The symmetry properties of �[U ℄ are then 
hara
terized by those of the Wilson loops W [U ℄.
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#1 #2

#3 #4

#5 #6

#7 #8

#9 #10

#11 #12

#13 #14

#15 #16

#17 #18

#19 #20

#21 #22Figure 5.1: Prototypes of spa
e-like Wilson loop shapes up to length 8.
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ible 
ontents of the representation M are determined by meansof the 
hara
ter relation (E.5). In pra
ti
e we �rst 
onstru
t a matrix represen-tative in ea
h 
onjuga
y 
lass C for every representationM with �xed C-parityand from this its 
hara
ter �(C) in this representation by taking the tra
e. Themultipli
ity nP of the irredu
ible representation �p in � = M are then 
al
u-lated by np = 148XC nC�(C)�p(C); (5.8)where �p(C) 
an be read from table E.2 and nC is the number of elements inthe 
onjuga
y 
lass C. The results are listed in table 5.3 and 5.4.shape A++1 A++2 E++ T++1 T++2 A�+1 A�+2 E�+ T�+1 T�+2#1 1 0 1 0 0 0 0 0 0 0#2 1 1 2 0 0 0 0 0 0 0#3 1 0 1 0 1 0 0 0 1 1#4 1 0 0 0 1 0 0 0 0 0#5 1 0 1 0 0 0 0 0 0 0#6 1 0 1 0 1 0 0 0 1 1#7 1 0 1 0 1 0 0 0 1 1#8 1 1 2 3 3 1 1 2 3 3#9 1 0 1 1 2 1 0 1 1 2#10 1 1 2 0 0 0 0 0 0 0#11 1 1 2 1 1 0 0 0 2 2#12 1 1 2 1 1 0 0 0 0 0#13 1 0 1 0 0 0 0 0 0 1#14 1 0 1 1 2 0 0 0 0 0#15 1 0 1 0 0 0 0 0 0 0#16 1 1 2 0 0 0 0 0 0 0#17 1 0 1 0 1 0 0 0 0 0#18 1 0 1 1 2 1 0 1 1 2#19 1 0 1 0 1 0 0 0 0 0#20 1 0 1 1 2 1 0 1 1 2#21 1 0 1 0 1 0 0 0 1 1#22 1 1 2 3 3 1 1 2 3 3Table 5.3: Irredu
ible 
ontents of the C-parity plus representations of the sym-metry group of the 
ube on Wilson loops up to length eight.The orthogonal wave fun
tions of the irredu
ible operators whi
h 
an bebuilt from Wilson loops up to length eight are listed in appendix E.3 in thetables on page 107 { 113. Note that the expressions for loop shape #8, 9, 11,18, 20 and 22 are too lengthy and 
an thus not be displayed.
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shape A+�1 A+�2 E+� T+�1 T+�2 A��1 A��2 E�� T��1 T��2#1 0 0 0 1 0 0 0 0 0 0#2 0 0 0 1 1 0 0 0 0 0#3 0 0 0 1 1 1 0 1 0 1#4 0 1 0 1 0 0 0 0 0 0#5 0 0 0 1 0 0 0 0 0 0#6 0 0 0 1 1 1 0 1 0 1#7 0 1 1 1 0 0 0 0 1 1#8 1 1 2 3 3 1 1 2 3 3#9 0 1 1 2 1 0 1 1 2 1#10 0 0 0 1 1 0 0 0 0 0#11 0 0 0 2 2 1 1 2 1 1#12 0 0 0 2 2 0 0 0 0 0#13 0 0 0 1 0 0 1 1 0 0#14 0 1 1 2 1 0 0 0 0 0#15 0 0 0 1 0 0 0 0 0 0#16 0 0 0 0 0 0 0 0 1 1#17 0 0 0 0 0 0 0 0 1 1#18 0 1 1 2 1 0 1 1 2 1#19 0 1 1 1 0 0 0 0 0 0#20 1 0 1 1 2 1 0 1 1 2#21 0 0 0 1 1 0 1 1 1 0#22 1 1 2 3 3 1 1 2 3 3Table 5.4: Irredu
ible 
ontents of the C-parity minus representations of thesymmetry group of the 
ube on Wilson loops up to length eight.



5.3. Simulation details 695.3 Simulation detailsWe performed simulations at three di�erent latti
e spa
ings in the range 0:1 fm �a � 0:18 fm and volumes between 1.4 fm and 1.8 fm. The simulation parame-ters for the di�erent runs are given in table 5.5, where we list the values of the
ouplings, the latti
e sizes and the relevant numbers for the obtained statisti
s.We also give our estimates of the hadroni
 s
ale r0=a and the 
orrespondingapproximate latti
e spa
ings in units of fermi for 
onvenien
e.� latti
e a[fm℄ r0=a # bins bin size meas./bin3.40 144 0.10 4.833(39) 206 420 703.40 144 0.10 4.833(39) 152 200 503.15 124 0.13 3.717(23) 202 500 502.86 104 0.18 2.740(10) 160 200 50Table 5.5: Run parameters of the glueball simulations. Values for the 
ou-pling �, the latti
e size and the obtained statisti
s are listed. The estimate ofthe hadroni
 s
ale r0 in terms of the latti
e spa
ing a is given as well as theapproximate latti
e spa
ing in units of Fermi.The gauge �eld 
on�gurations were updated by performing a 
ompoundsweep 
onsisting of one over-relaxation sweep and one standard Metropolissweep.We �rst performed two "small" preliminary simulations at � = 3:40 and� = 2:86. After ea
h 
ompound sweep we measured �ve di�erent loop shapes,#6; 8; 11; 14; 22, on �ve smearing levels Sn; n = 2; 4; : : : ; 10 with smearing pa-rameter4 �s = 0:2 and subsequently proje
ted into the A++1 -
hannel.In the two large simulations we measured all 22 Wilson loop shapes on thesame smearing levels as before (Sn; n = 2; 4; : : : ; 10;�s = 0:2) and proje
tedthem into all 20 irredu
ible glueball 
hannels. Measurements were taken afterthree and �ve 
ompound sweeps at � = 3:40 and � = 3:15, respe
tively.The proje
tions of the loop shapes into the di�erent 
hannels were done a
-
ording to the des
ription in se
tion 5.2. Then the 
orrelator matrix elementswere 
onstru
ted from the proje
ted operators and Monte Carlo estimates wereobtained by averaging the measurements in ea
h bin. During a simulation runwe measure all possible 'polarizations' in a given 
hannel and 
olle
t them to-gether on the level of the 
orrelation matrix. This will eventually suppress thestatisti
al noise by a fa
tor of the dimension of the representation, if the dif-ferent polarizations are anti-
orrelated. Finally, the resulting large 
orrelationmatri
es from ea
h bin were stored for later analysis. Of 
ourse the smearingand in parti
ular the measurements of the loops takes a 
onsiderable part ofthe simulation time and 
an in prin
iple be redu
ed by 
onsidering only a smallnumber of shapes. On the other hand one is interested in having as large aspossible the set of operators for 
onstru
ting the wave fun
tion of the groundstate. In addition, having measured all loop shapes up to length eight in thetwo larger simulations allows us to identify the important loop shapes for futuresimulations. However, only a moderate amount of work has been devoted tothis kind of analysis up to now, 
f. se
tion 5.4.2.4For details of the smearing we refer to se
tion 4.2.3.



70 Chapter 5. GlueballsFor the extra
tion of the glueball masses one has to 
onsider va
uum-sub-tra
ted operators. For this purpose we also measured and stored the expe
tationvalues of all the operators in ea
h bin. Va
uum subtra
tion is required only inthe A++1 -
hannel sin
e it has the same quantum numbers as the va
uum. Allother 
hannels have a vanishing va
uum expe
tation value, thereby yielding a
he
k for the 
orre
t 
onstru
tion of operators in ea
h of the 
hannels. Weinvestigated di�erent methods of removing the va
uum expe
tation value and,�nally, followed a strategy whi
h is outlined in the next se
tion amongst otherdetails of the analysis.5.4 Analysis detailsIn the �nal analysis phase for extra
ting the glueball masses we resort to thevariational te
hniques des
ribed in se
tion D.1 and D.2. Although the pro
edureis straightforward in general, let us put some remarks whi
h are related to theanalysis of the glueball masses in parti
ular.In a given symmetry 
hannel we have to �nd a linear 
ombination of the basi
operators whi
h overlaps best with the wave fun
tion of the ground state and,if ne
essary, of the next few ex
ites states. This 
an be a
hieved by 
hoosingthe linear 
ombination whi
h minimizes the e�e
tive mass on a given time sli
eat t0 and amounts to solving the generalized eigenvalue equationC(t1)v = e�E(t1�t0)C(t0)v: (5.9)This, however, requires a positive de�nite C(t0), whi
h in general is not ful�lledfor t0 � 1 due to statisti
al errors. In parti
ular the large number of opera-tors measured in the glueball simulations yield a few very small or even slightlynegative eigenvalues of C(t0) with large relative errors. This is due to the fa
tthat some of the operators are strongly 
orrelated and therefore not linearlyindependent on the given MC sample, but 
an be avoided by �rst diagonalizingand then proje
ting and trun
ating C(t0) to an appropriate subspa
e of oper-ators as des
ribed in se
tion D.1. However, the large statisti
al noise in someof the operators 
an even spoil the diagonalization of C(t0) in su
h a way thatremnants of the unphysi
al modes are still present even after the trun
ation toa smaller operator basis.Therefore we 
hoose right from the beginning a set of operators whi
h we
onsider to be well measured (
f. se
tion 5.4.2). On this set the whole pro
edureis numeri
ally stable and well de�ned. Nevertheless, the 
hoi
e of operators isarbitrary to some extent and an optimized 
hoi
e will presumably improve thestability of the analysis. It would be most interesting and rather easy to inves-tigate for example the overlap of ea
h of the operators with the ground state.First steps in this dire
tion are already undertaken, but it requires further work.Another remark 
on
erns the va
uum subtra
tion ne
essary in the A++1 -
hannel. To obtain va
uum-subtra
ted operators one usually 
onsiders�sub.(�) = �(�) � h0j�(�)j0i. However, we follow a di�erent strategy and treatthe va
uum as an additional state 
arrying zero energy. As it turns out the va
-uum state 
an be determined with very high a

ura
y and it is safe to 
onsideronly the operator basis orthogonal to the va
uum in the �tting pro
edure. For
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ut out the va
uum state obtained from solving the generalizedeigenvalue equation (5.9), i.e. we only 
onsider the 
orrelation matrix5CKij (t) = (vi; CM (t)vj); (5.10)with i; j running from i; j = 2; : : : ;K �M in the further analysis. In our experi-en
e this strategy yields the most stable subtra
tion of the va
uum 
ontributionwith respe
t to the statisti
al 
u
tuations of the subtra
ted operators.In the last step for extra
ting the glueball masses the large 
orrelation ma-tri
es are trun
ated down to a 1 � 1 or 2 � 2 matrix whi
h is subsequently�tted in the �t range tmin : : : tmax taking both temporal 
orrelations and 
or-relations among the operators into a

ount. The 
hoi
e of tmax is not 
ru
ialand is usually taken a

ording to the relative error of the matrix elements under
onsideration and the �2-fun
tion. More important is the 
orre
t 
hoi
e of tmin.Sin
e ex
ited glueball masses are rather high we do not expe
t large 
ontamina-tion of the ground state 
orrelators from ex
ited states even on time sli
e t = 1and therefore tmin = 1 was usually 
hosen. In parti
ular this 
hoi
e is safe if we�x t0 = 1 and t1 = 2 rather than t0 = 0 and t1 = 1. Indeed, in the former 
asethe �2-fun
tion remains more stable when we in
rease tmin = 1 to tmin = 2 as a
he
k for the 
onsisten
y in the extra
ted values for the masses. As an exampletake the results in table F.6 for the A++1 -
hannel at � = 2:86, where we observea large shift in the �tted mass for the 
hoi
e t0 = 0 and t1 = 1 while no 
hangeis seen for the 
hoi
e t0 = 1 and t1 = 2 when tmin is in
reased from 1 to 2.One remark is in order 
on
erning the mass estimate in the A++1 -
hannel ofthe � = 3:15 simulation. There we observe a systemati
 di�eren
e of the massestimate depending on whether tmin = 1 or 2 and lying signi�
antly outsidethe statisti
al error of the usually 
hosen tmin = 1 value. In order to take thissystemati
 shift into a

ount we 
al
ulate an average of the two highlightedvalues in table F.5 taking their errors as a measure of the weight. To be on thesafe side the �nal error is just the simple average of the two errors and 
oversboth signi�
antly di�erent values within one standard deviation.5.4.1 ResultsThe results of the �ts to the glueball 
orrelators are 
olle
ted in the appendix intables F.3 { F.6 where we list the values of t0 and t1, the number of operators,Nop, kept after the trun
ation in C(t0), the �t range tmin : : : tmax, the �2 perdegree of freedom, �2=NDF, and the mass estimate. All temporal 
orrelationsand 
orrelations among the operators are taken into a

ount by performing
orrelated �ts as des
ribed in se
tion D.2. The 
ovarian
e matrix is 
al
ulatedfrom Ja
kknife samples and the error is estimated using a Ja
kknife pro
edure.We in
lude the results of di�erent �ts in the tables in order to give an impressionon the stability of the �ts. In ea
h 
hannel the result highlighted in boldfa
e isour �nal 
hoi
e and represents a most reasonable mass estimate for the given
hannel. These �nal mass estimates are 
olle
ted in table 5.6 for 
onvenien
e.To 
ompare these values it is 
onvenient to use r0 to set the s
ale. In table5.7 we list our estimates of the glueball masses expressed in terms of r0, while�gure 5.2 and 5.3 show our values for the A++1 - and the E++; T++2 -
hannel,respe
tively, together with results from di�erent 
al
ulations with the Wilson5See se
tion D.1 for notations.



72 Chapter 5. Glueballs� = 2:86 � = 3:15 � = 3:40 � = 3:40A++1 1.411(96) 1.054(56) 0.831(33) 0.836(23)E++ 1.534(62) 1.233(48)T++2 1.609(55) 1.234(28)A�+1 1.65(18) 1.395(86)E�+ 1.97(20) 1.681(72)T�+2 1.92(11) 1.631(72)T+�1 2.10(18) 1.64(16)Table 5.6: Final glueball mass estimates in terms of the latti
e spa
ing, amG.a
tion (
rosses) and the 
al
ulation of Morningstar and Peardon with a treelevel/tadpole improved anisotropi
 a
tion (empty 
ir
les).J � = 2:86 � = 3:15 � = 3:40 � = 3:40A++1 0 3.87(27) 3.92(23) 4.02(16) 4.04(12)E++ 2 5.70(23) 5.96(24)T++2 2 5.98(21) 5.96(14)A�+1 0 6.13(67) 6.74(42)E�+ 2 7.32(74) 8.12(35)T�+2 2 7.14(41) 7.88(35)T+�1 1 7.81(67) 7.93(78)Table 5.7: Final glueball mass estimates in terms of r0, r0mG. The 
ontinuumspin interpretation of ea
h 
hannel is given for 
onvenien
e.It is interesting to 
ompare our results with the 
ontinuum values from var-ious 
ollaborations. For this purpose we resort to [86℄ where the results of refs.[70, 81, 83℄ have been expressed or 
onverted in units of r0 using the interpolat-ing formula for the Wilson a
tion [64℄ and, whenever ne
essary, the 
ontinuumextrapolation has been redone. The �nal results are listed in table 5.8. Our 
on-tinuum result is an extrapolation to the 
ontinuum using a �t fun
tion linear in(a=r0)2, whi
h amounts tor0m0++ = 4:12(21)� (2:1� 3:1)� ar0�2 : (5.11)The �2 per degree of freedom of the �t is �2=NDF = 0:07. The data in theother 
hannels is too little to be extrapolated to the 
ontinuum and we simplyquote the masses obtained on the �nest latti
e (a = 0:10 fm) in bra
kets. Itis interesting to 
ompare our results with the 
ontinuum values from the othergroups listed in table 5.9. Note in parti
ular our values for the degenerate 2++state, E++ and T++2 , whi
h agree very well with the 
ontinuum values of othergroups. We observe restoration of the degenera
y in the 2++ and 2�+ 
hannelwithin the statisti
al errors.
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Figure 5.2: Glueball mass estimates for the A++1 
hannel. Results from simula-tions of the Wilson a
tion (
rosses) and a tree level/tadpole improved anisotropi
a
tion (empty 
ir
les) are shown together with the results obtained with the FPa
tion (�lled 
ir
les).Collab. r0m0++ r0m2++ yearM&P [80℄ 4.21(11)(4) 5.85(2)(6) 1999GF11 [83℄ 4.33(10) 6.04(18) 1999Teper [70℄ 4.35(11) 6.18(21) 1998UKQCD [81℄ 4.05(16) 5.84(18) 1993FP a
tion 4.12(21) [5.96(24)℄ 2000Table 5.8: Comparison of the two lowest glueball masses in units of r0. The2++ value is not extrapolated to the 
ontinuum but denotes the mass obtainedat a latti
e spa
ing a = 0:10 fm.Collab. r0m0�+ r0m2�+ r0m1+� yearM&P [80℄ 6.33(7)(6) 7.55(3)(8) 7.18(4)(7) 1999Teper [70℄ 5.94(68) 8.42(78) 7.84(62) 1998FP a
tion [6.74(42)℄ [8.00(35)℄ [7.93(78)℄ 2000Table 5.9: Comparison of glueball masses in units of r0. Values in bra
ketsdenote masses obtained at a latti
e spa
ing a = 0:10 fm and are not extrapolatedto the 
ontinuum.
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Figure 5.3: Glueball mass estimates for the 2++ 
hannel. Results from sim-ulations of the Wilson a
tion (
rosses) and a tadpole and tree level improvedanisotropi
 a
tion (empty symbols) are shown together with the results obtainedwith the FP a
tion (�lled symbols). Squares and 
ir
les denote the E++ andT++2 mass estimates, respe
tively.



5.4. Analysis details 755.4.2 Signal/noise ratio of the operatorsAs already mentioned before it is interesting and even ne
essary to analyzewhi
h operators are well measured in a simulation and whi
h operators have alarge 
ontribution to a given glueball state and thus have a large overlap withthe 
orresponding wave fun
tion. This 
an give some hints about the size of theglueballs and might be helpful for the 
hoi
e of operators and smearing s
hemesin future simulations. It is for this reason that we make statements even if we
an only give a tenden
y for the preferen
e of some smearing s
hemes.Here we only report on our �ndings of what the signal/noise ratio of the op-erators 
on
erns. The analysis of the overlap of ea
h operator with the groundstate has not yet systemati
ally been done.In ea
h 
hannel we analyzed the signal of the operators at � = 3:40 bylooking at the de
ay in time of the diagonal 
orrelators. As a measure of thequality of an operator we take the relative error of the 
orresponding signal."Good" operators have a signal whi
h 
an be followed over three time sli
eswith an a

ura
y of around ten per
ent or even four time sli
es when a

eptingan error less than 50 per
ent. "Bad" operators 
an be measured a

uratelyenough (on the ten per
ent level) only on time sli
e � = 0 and 1, while already� = 2 is lost in the noise 
ompletely. In
luding su
h operators in the analysis 
anbe dangerous, be
ause they may spoil the solution of the generalized eigenvalueproblem when solved on t0 = 1; t1 = 2, yielding an unphysi
al guess for thewave fun
tions, or they may even introdu
e errors already when trun
ating the
orrelation matri
es down to a stable subspa
e of C(t0 = 1).Of 
ourse the above 
lassi�
ation is not 
lear
ut but rather depends on howthe operators behave 
ompared to others in the same 
hannel, simply meaningthat we sometimes a

ept operators on an a

ura
y level whi
h would be reasonenough for reje
ting them in other 
hannels.In this sense the following results of the analysis should only be understoodas a rough guide, and one has to keep in mind that the preferred operators andsmearing s
hemes may depend on the 
onsidered latti
e spa
ing.In the A++1 {
hannel we 
ould well measure all 22 loop shapes on smearings
hemes 3, 4 and 5 ex
ept loop shape #16 and 17, whi
h 
ould not be measuredwith 
omparable a

ura
y.The A++2 {
hannel 
ould not be measured at this latti
e spa
ings, however,operators on low smearing levels seem to have a larger signal and smaller relativeerror. Nevertheless, the results indi
ate that shape #16, 1, 12 and 11 are themost problemati
 to measure (in the given order).The E++{
hannel seems to prefer smearing s
hemes 3, 4 and 5 at the 
onsid-ered latti
e spa
ings, however the shapes #1, 9, 16, 17 and the se
ond proje
tionof #2, 10 and 22 
ould not be well measured even there.In the T++1 {
hannel the signal was again too weak to yield any reliable result,but 
learly the �rst proje
tion of shape #8 and 22 are mu
h more diÆ
ult tomeasure than all the others.Analyzing the signal of the operators in the T++2 {
hannel we found that theshape #7, the �rst and third proje
tion of #8, as well as shape #17, 19, the�rst proje
tions of #18 and 20 
ould not be well measured on all the smearings
hemes.In the A�+1 {
hannel all operators 
ould be well measured, nevertheless we
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luded smearing s
heme 1, 2 and 3 in our analysis improving the result 
on-siderably.While none of the ten measured operators in the A�+2 {
hannel gave anyuseful signal, we 
ould still make out a tenden
y for the preferen
e of lowersmearing s
hemes.For analyzing the E�+{
hannel we ex
luded the �rst two smearing s
hemesand the �rst proje
tion of shape #8 and 22, however the latti
e spa
ing isalready too 
oarse to get a reliable signal.The T�+1 {
hannel shows a 
lear preferen
e for the lowest two smearings
hemes and shape #9, 11 and 22.In the T�+2 {
hannel we ex
luded the �rst two smearing s
hemes and insmearing s
heme 3, 4 and 5 the operators #7 and the se
ond proje
tions of #8,18 and 20.While in the 
hannels A+�1 ; T+�2 ; A��1 ; A��2 ; E�� we did not �nd any a
-
eptable signal, A+�2 seems to prefer #9, 14 and 22, E+� #7, 9, 14 and 22on the lowest smearing s
heme, T+�1 #5, 6, 7, proje
tion two and three of #8,proje
tion two of 9, and shapes #10, 11, 14 and 22,The T��1 {
hannel shows a tenden
y for the lowest smearing s
heme and theshapes #8, 9, 18, 20, 21 and 22.Finally, the T��2 {
hannel prefers shape #6, 8, 9, 11 and 22 on the lowersmearing s
hemes.5.5 Con
lusions and outlookThe main result of this 
hapter is the determination of the 0++ and 2++ glueballmasses using the parametrized FP a
tion. We obtain 1627(83) MeV for the 0++and 2354(95) MeV for the 2++ glueball mass6, respe
tively. We observe s
alingwithin one standard deviation and restoration of the degenera
y in the 2++ and2�+ 
hannel. Mass estimates of the 0�+; 2�+ and the 1+� glueball are alsoobtained and they agree with the best earlier results within our albeit largestatisti
al errors. Besides being interesting physi
al results by themselves, this
al
ulation provides a determination of glueball masses with a very di�erentformulation of latti
e gauge theory and, in that sense, 
on�rms universality.In addition, we observe s
aling of the results within one standard deviationand the perfe
t properties of the parametrized FP a
tion as seen in 
hapter 4are 
on�rmed.As mentioned in the introdu
tion, it is well known, that glueball masses arediÆ
ult to measure on the latti
e. Indeed, we 
an barely resolve higher lyingglueball states and measuring ex
ited states be
omes impossible at the latti
espa
ings 
urrently available to us. In this sense we 
an not really take advantageof the parametrized FP a
tion, whi
h is intended to be used on 
oarse latti
es.One way around this diÆ
ulty is to use anisotropi
 latti
es, where the latti
espa
ing in temporal dire
tion is mu
h smaller than in spatial dire
tion, at � as.The 
onstru
tion of an anisotropi
 parametrized FP a
tion is 
urrently underinvestigation and we refer to the last 
hapter for an outlook.6Only the 0++ value represents a 
ontinuum value, while the 2++ value 
orresponds tothe one measured at a latti
e spa
ing of a = 0:10 fm.



Chapter 6Con
lusions and outlookIn this work we have presented a new parametrization of the FP a
tion of aspe
i�
 RGT. The new parametrization reprodu
es the 
lassi
al properties ofthe a
tion ex
ellently. This a
tion was tested extensively on the stati
 quark{antiquark potential, the �nite temperature phase transition and on the glueballspe
trum.The approa
h we use is building simple loops (plaquettes) from single gaugelinks as well as smeared links. We analyti
ally 
al
ulated the 
ouplings of theFP a
tion in the quadrati
 approximation and 
are was taken not to violate theO(a2) (\on{shell") Symanzik 
onditions. It is interesting to note that withinthis new ansatz the se
ond Symanzik 
ondition is automati
ally ful�lled. Wealso 
he
ked that the parametrization respe
ts approximate s
ale invarian
e ofinstanton solutions.We parametrized the FP a
tion at latti
e spa
ings suitable for performingsimulations on 
oarse latti
es in physi
ally interesting regions. Sin
e we are notonly parametrizing the a
tion values but also the derivatives with respe
t to thegauge �elds as well, the a
tion is espe
ially suited for the use in Monte Carlosimulations.For testing the a
tion we measured the 
riti
al temperature and the stati
quark{antiquark potential at various values of the gauge 
oupling. We pro-du
ed physi
ally interesting results by measuring the glueball spe
trum in allsymmetry 
hannels. The problemati
 A++1 {
hannel is an ex
ellent 
andidatefor testing the improvements and it indeed shows mu
h redu
ed latti
e artifa
tsat moderate latti
e spa
ing a ' 0:1 fm as 
ompared to the Wilson gauge a
tion.We have determined glueball masses of 1627(83) MeV for the 0++ glueball inthe 
ontinuum and 2354(95) MeV for the 2++ glueball at a latti
e spa
ing ofa = 0:1 fm.The results of this work are now being pro
essed for publi
ation.Another proje
t 
urrently under study is the 
onstru
tion of a parametrizedFP gauge a
tion on anisotropi
 latti
es. This generalization has not been doneuntil now but it is needed espe
ially to ta
kle the full glueball spe
trum in
ludingex
ited states and �nds its appli
ation in a wide range of problems like thedetermination of the string tension or �nite temperature physi
s.We have new ideas for the 
onstru
tion of su
h anisotropi
 FP a
tions and formore physi
al ways of extra
ting the e�e
tive renormalized anisotropy a�=a�,77



78 Chapter 6. Con
lusions and outlookwhi
h is a parti
ular problem in anisotropi
 latti
e studies. We analyti
ally
al
ulated the 
ouplings and the spe
trum in the quadrati
 approximation aswell as the tree level perturbative stati
 potential. As expe
ted the spe
trum isexa
t and has the 
orre
t anisotropy, while the stati
 potential shows ex
ellentrotational symmetry and has very little latti
e artifa
ts even at distan
e r = 1.The main idea for the 
onstru
tion of an anisotropi
 FP a
tion on 
oarse latti
esis to use the parametrized FP a
tion presented in this work as a starting pointand to perform one or several RGT steps in the spatial dire
tions only. In thisway one obtains an a
tion on an anisotropi
 latti
e, whi
h shares all the 
lassi
alproperties of the isotropi
 
ounterpart.Di�erent possibilities for the parametrization of the a
tion at 
oarse latti
espa
ings are 
urrently under investigation.



Appendix AThe O(a2) and O(a4)Symanzik 
onditionsA.1 The O(a2) Symanzik 
onditionsIn this appendix we derive the O(a2) Symanzik 
onditions [87, 88, 89, 90, 91, 92℄by 
onsidering 
onstant non-abelian gauge potentials. The formulas apply toboth SU(2) and SU(3).It is useful to �rst de�ne for a general gauge �eld in the 
ontinuum adimension-4 operator R0 = �12X�� Tr �F2��� ; (A.1)and three dimension-6 operators:R1 = 12X�� Tr�(D�F��)2� ; (A.2)R2 = 12X���Tr�(D�F��)2� ; (A.3)R3 = 12X���Tr (D�F��D�F��) : (A.4)The equations of motion are P�D�F�� = 0 hen
e the O(a2) ('on shell')Symanzik 
onditions imply only that the 
oeÆ
ients of R1 and R2 vanish whenone expands a latti
e a
tion in powers of the latti
e spa
ing a. The 
oeÆ
ientof R3 is not required to vanish (and usually it does not for the FP a
tion).Let us now spe
ify to 
onstant gauge potentials, ��A� = 0. In the 
ontinuumone has F�� = [A�;A� ℄ (A.5)and D�F�� = [A�;F��℄: (A.6)Here A� and F�� are 
hosen to be anti-hermitian.79



80 Appendix A. The O(a2) and O(a4) Symanzik 
onditionsWe 
an put a 
onstant non-abelian gauge �eld on the latti
e by de�ningA� = i�� � 12��; (A.7)where �k; � = k = 1; 2; 3 are the Pauli matri
es, while �4 = (�1 + �2 + �3)=p3.Expanding any latti
e gauge a
tion in powers of �� and identifying the 
oeÆ-
ients of the operators de�ned in (A.1)-(A.4) one derives the O(a2) Symanzik
onditions and a normalization 
ondition.For the spe
i�
 latti
e gauge a
tion ansatz 
onsidered in se
tion 2.3 oneobtains1X�<� w�� = 14R0(1 + (4 + 2�0)
1)+ 112R1 �1� 2
1(1� 4�0) + 32(1� �0)2(
21 � 2
2)�+ 12R3�
1 + 14(1 + 2�0)(
21 � 2
2)� : (A.8)The normalization 
ondition is obtained from the 
oeÆ
ient of R0,p10 + p01(1 + (4 + 2�0)
1) = 1 : (A.9)The �rst O(a2) Symanzik 
ondition requires the 
oeÆ
ient of R1 to vanish,p10 + p01�1� 2
1(1� 4�0) + 32(1� �0)2(
21 � 2
2)� = 0 : (A.10)It is interesting to see that the operator R2 is absent and hen
e the se
ond O(a2)Symanzik 
ondition is satis�ed automati
ally for the general ansatz 
onsideredhere. Re
e
ting the fa
t that when the FP a
tion is expressed in terms ofsimple loops some of them give a nonzero 
oeÆ
ient of R2, this is even moreastonishing.A.2 Conditions from 
onstant abelian gauge �eldsFor any solutions of the latti
e equations of motion the value of the FP a
tionshould 
oin
ide with the value of the 
ontinuum a
tion on the 
orresponding
ontinuum solution. Sin
e a 
onstant abelian gauge �eld (F�� = 
onst.) is asolution in the 
ontinuum, it should also be a solution on the latti
e. Thisfa
t 
an be used to derive 
onditions whi
h should be ful�lled by the FP a
tion,however, it provides a ni
e and 
onvenient method for 
al
ulating 
onditions, e.g.normalization or O(a4) 
onditions, for any latti
e gauge a
tion. In the followingwe demonstrate the eÆ
ien
y of the method by means of 
al
ulating the normand O(a4) Symanzik 
onditions. Note that the example is for a parametrizationwhere p11 = 0 for simpli
ity.1From the non-linear parameters only the zeroth order 
oeÆ
ients 
ontribute to the normal-ization and the O(a2) Symanzik 
ondition. To keep notation simple we substitute 
(0)i ! 
iin the rest of this se
tion.



A.2. Conditions from 
onstant abelian gauge �elds 81Let us �rst remark that the 
onstant abelian gauge �elds do not 
ontribute tothe O(a2) Symanzik 
onditions sin
e the 
orresponding dimension-6 operatorsare identi
ally zero for this 
ase. The O(a4) 
onditions obtained below aretherefore less important than the O(a2) 
onditions obtained in the previousse
tion and should be used in the �t only if they do not 
hange signi�
antlyother, maybe more important, properties of the FP a
tion.Nevertheless, the formulae are very useful for 
he
king the programs, evenif the 
orresponding 
onstraints are not implemented.Consider now a latti
e gauge potential on an in�nite latti
e given byU�(n) = exp�i12�3���n�� ; (A.11)where ��� = ����. Then one hasS(�)� (n) = 2 
os���U�(n); (A.12)Qs�(n) = �13 X�6=�(1� 
os���)U�(n) (A.13)and x� = �23 X�6=�(1� 
os���): (A.14)With this one 
al
ulates �(x�) and 
i(x�). Further one �ndsQ(�)� (n) = A(�)� U�(n); (A.15)where A(�)� = �12 24X�6=��(1� 
os���) + �(x�)(1� 
os���)35 : (A.16)The asymmetri
ally smeared link isW (�)� (n) = B(�)� U�(n); (A.17)where B(�)� = 1 + 
1(x�)A(�)� + 
2(x�)(A(�)� )2 + : : : : (A.18)The smeared plaquette variable isw�� = 2 �1� 
os��� �B(�)� B(�)� �2� ; (A.19)and the standard plaquette variable yieldsu�� = 2(1� 
os���): (A.20)Expanding in powers of ��� one obtains for the O(a2) terms2A = V (p10 + p01(1 + (4 + 2�0)
10)) ��212 + �213 + : : :� ; (A.21)2For simpli
ity of notation we set 
(j)i ! 
ij for the rest of this se
tion.



82 Appendix A. The O(a2) and O(a4) Symanzik 
onditionswhi
h yields again the normalization 
ondition eq. (A.9).The value of the a
tion should be purely quadrati
 in �, hen
e the termsproportional to �212�213 and �412 should vanish. This gives two 
onditions,p01 �3
10 + 94
210(1 + 2�0) + 2
11(2 + �0) + 32
20(1 + 2�0)�� 12p02 �
10 + 
210(1 + 2�0)� = 0; (A.22)andp20 � 112p10 + p02 �1 + 4
10�0 + 4
210(1 + �20)�� 112p01 �1 + 2
10(2 + 7�0) + 3
210(2 + 3�20)+8
11(2 + �0) + 6
20(2 + �20)� = 0: (A.23)By expressing p01 through the normalization 
ondition eq. (A.9) one gets equiv-alentlyp20 = 112+ 13p01 �3
10�0 + 34
210(2 + 3�20) + 2
11(2 + �0) + 32
20(2 + �20)�� p02 �1 + 4
10�0 + 4
210(1 + �20)� : (A.24)Equations (A.22) and (A.24) de�ne e.g. p20 and p02 as a fun
tion of the non-linear parameters �i and 
(j)i � 
ij . Note that higher order 
oeÆ
ients do not
ontribute to this order, and that p10 and p01 are assumed to be �xed from thenormalization and the O(a2) Symanzik 
onditions.



Appendix B
Instanton 
lassi
al solutionson the latti
e
In this appendix we des
ribe the 
onstru
tion and generation of instanton 
on-�gurations on the latti
e and how they 
an be used in the determination of aparametrized FP a
tion.FP a
tions are 
lassi
ally perfe
t latti
e a
tions, whi
h possess s
ale-invariantinstanton solutions down to a minimum size of around one latti
e spa
ing.The FP a
tion value for these solutions 
oin
ides with the 
ontinuum value,A
ontinst ; AFP = jQFPjA
ontinst., where QFP is the FP topologi
al 
harge operatoron the latti
e de�ned through the FP equation, eq. (2.4). For any other 
on-�guration U the FP a
tion will be larger than the 
orresponding 
ontinuumone-instanton a
tion AFP(U) � jQFP(U)jAinst. Therefore FP a
tions are espe-
ially suited for latti
e studies of topology, whi
h are usually hampered by thepresen
e of large latti
e artifa
ts, 
aused by so 
alled dislo
ations [93, 94℄, i.e.non-zero 
harged 
on�gurations whose 
ontribution to the topologi
al 
harge
omes entirely from small lo
alized regions of O(a4). FP a
tions, however, al-low a theoreti
ally 
lean approa
h to topology on the latti
e [2, 95, 96, 3, 97℄,whi
h has been applied su

essfully in SU(2) latti
e gauge theory [11, 12, 13℄.Stri
tly speaking one-instanton solutions on a latti
e with periodi
 boundary
onditions do not exist. This problem 
an in prin
iple be 
ir
umvented byeither using twisted boundary 
onditions or one-instanton 
lassi
al solutions onopen latti
es [14℄. However, despite of all this, approximate 
lassi
al solutionsas 
onstru
ted below 
an still be taken into a

ount in the determination ofparametrized FP a
tions on the footing of normal 
on�gurations and they 
anserve to 
he
k the 
exibility of the present ansatz for the parametrization.We will �rst review the 
onstru
tion of SU(2) one-instanton 
lassi
al solu-tions on the latti
e and then report on some results and observations in the
ontext of generating these 
on�gurations.83



84 Appendix B. Instanton 
lassi
al solutions on the latti
eB.1 Constru
tion of SU(2) single instanton 
on-�gurationsWe begin with the known gauge potential for a single 
ontinuum SU(2) instantonof size � 
entered at x = 0 in the smooth regular gauge:A�(x) = x2x2 + �2 gy(x)��g(x); (B.1)with g(x) = x4 + ixi�ijxj ; (B.2)where �i; i = 1; 2; 3 are the Pauli matri
es. This solution 
an be trivially shiftedto any 
enter x
. As mentioned above, su
h a single instanton 
on�gurationis not a solution of the 
lassi
al equations of motion on a periodi
 volume.Indeed, putting the solution on a periodi
 torus of size L one �nds [11℄ that itsa
tion diverges linearly due to the dis
ontinuity of the �eld 
on�guration on theboundary x4 = �L=2, A(L) = Ainst + O(L). Following Pugh and Teper [94℄the problem 
an be alleviated by 
onsidering instead 
on�gurations made of aninstanton and a superimposed dislo
ation1. This is a
hieved by performing asingular gauge transformation on the 
on�guration given in (B.1) before puttingit on the latti
e, V�(n) = g(n)U�(n)gy(n+ �̂); (B.3)where g(x) is de�ned in equation (B.2) and U�; V� are gauge link matri
es onthe latti
e. Following [11℄ the �nite volume 
orre
tion to the a
tion of this
on�guration is A(L) = Ainst +O(1=L3) and we will use the ansatzA(L) = Ainst + a1 � �L�3 + a2 � �L�5 (B.4)when studying the �nite size behavior of the 
on�gurations.In order to dis
retize the above 
on�gurations we de�ne the link variableson the latti
e by approximating the path ordered exponentialU�(n) = P exp i Z n+�̂n A�(x)dx! (B.5)through a produ
t along the lines of the latti
e,U�(n) =Yj �U�(n; j); (B.6)where the fa
tors�U�(n; j) = exp (iA�(xj = na+ j�x�̂)�x) (B.7)are evaluated for the interval [xj ��x=2; xj +�x=2℄. One typi
ally breaks thelatti
e spa
ing up into 20 equal intervals, �x = a=20, in order to a
hieve ana

urate evaluation of (B.5) for all 
ases of interest.1The dislo
ation 
an be interpreted as the remnant of a small anti-instanton that fellthrough the latti
e.



B.2. Results and 
omments on SU(2) single instanton 
on�gurations 85A mu
h ni
er way is to use a 
losed expression of equation (B.5) obtainedby performing the path ordered integral analyti
ally [98℄:U4(x) = 
os f4(x) � i xi�ipx2 � x24 sin f4(x); (B.8)Ui(x) = 
os fi(x) + ix4�i � �ijkxj�kpx2 � x2i sin fi(x); i = 1; 2; 3; (B.9)f�(x) = s x2 � x2�x2 � x2� + �2 (B.10)�24ar
tan0� a+ x�qx2 � x2� + �21A� ar
tan0� x�qx2 � x2� + �21A35 :With these expressions the instanton 
on�gurations 
an dire
tly be put on thelatti
e with x�=a = integer provided x
 is not a latti
e site. In order to 
lose theboundary we perform a singular gauge transformation as mentioned previously,V�(x) = g(x)U�(x)gy(x+ �̂); (B.11)where V�(x) is now as 
lose as possible to the unity at the boundary.B.2 Results and 
omments on SU(2) single in-stanton 
on�gurationsWe generated SU(2) single instanton 
on�gurations on a 124 latti
e with theinstanton radius �=a ranging from 3:0 down to 1:1 
entered in a hyper
ube,x
 = (5:5; 5:5; 5:5; 5:5), in a 
ube, x
 = (5:5; 5:5; 5:5; 6), and in a plaquette,x
 = (5:5; 5:5; 6; 6), in the singular gauge following the 
onstru
tion as pre-sented in the previous se
tion. Then we blo
ked the 
on�gurations down to a64 latti
e, the instanton radii being halved, and then inverse blo
ked them ba
kto the �ne latti
e. The inverse blo
king means that, keeping the 
oarse 
on�g-uration �xed, one sear
hes for a 
on�guration whi
h minimizes the r.h.s. of theFP equation (2.4). The 
on�gurations are minimized until the a
tion de
reaseper sweep was less than 10�6 to 10�8. As the starting �ne 
on�guration weused the originally generated �ne 
on�guration.It is interesting to investigate the minimization pro
ess more 
losely in orderto observe the falling through the latti
e of the instantons. As expe
ted it turnsout that the instanton solutions are relatively smooth 
on�gurations even onthe 
oarse latti
e having u � 0:25 ex
ept for some plaquettes near the instanton
enter. The 
u
tuations of these few plaquettes are growing when the instantonradius �=a is de
reased, i.e. when the instantons are more and more lo
alizedobje
ts, and they rea
h a maximum value between 1 � u � 2 at around �=a ' 1.This is exa
tly when the instanton falls through the latti
e to possibly be
omea dislo
ation.This falling through is expressed in the minimization pro
ess through a jumpin the value of the blo
king kernel, whi
h is exa
tly zero for a 
lassi
al solutionand non-zero for any other 
on�guration. Figures B.1 shows the evolution of



86 Appendix B. Instanton 
lassi
al solutions on the latti
eone-instanton 
lassi
al solutions on a 124 latti
e 
entered in a hyper
ube duringthe minimization pro
ess. V is the �xed 
oarse 
on�guration and U denotesthe minimized 
on�guration on the �ne latti
e. The radius � of the instanton
on�gurations is in units of the 
oarse latti
e spa
ing. Note, that AFP (V ) =AFP (U) + T (U; V ) and that for an exa
t 
lassi
al solution of the FP a
tion onehas T (U; V ) = 0. The values of the a
tion and the blo
king kernel are in units ofthe 
ontinuum a
tion value 4�2, while the a
tion de
rease per sweep is res
aledappropriately.The �rst 
on�guration with �=a = 0:90 is already 
lose to a 
lassi
al solutionright from the beginning and it 
onverges to the �nal minimized 
on�gurationvery fast. Note that T (U; V ) is indeed zero up to �nite volume 
orre
tionsO((�=L)3) from the boundaries.The se
ond 
on�guration with �=a = 0:85 is still 
lose to a 
lassi
al solutionat the beginning, but slowly deviates from it during the minimization pro
ess.After around 35 sweeps, a di�erent more preferable minimizing 
on�gurationis found, whi
h is no longer a 
lassi
al solution (T (U; V ) 6= 0). This is whenthe instanton falls through the latti
e and it is expe
ted to be a

ompanied bya drop of the FP topologi
al 
harge QFP from QFP = 1 to QFP = 0, therebypreventing the 
on�guration from being a dislo
ation.The third 
on�guration falls through the latti
e after already 10 sweeps and�rst 
onverges towards a lo
al minimum in the spa
e of minimizing 
on�gura-tions before �nding the true, presumably global minimum.These results are 
olle
ted in �gure 2.1 in se
tion 2.5 on the example of 
on-�gurations 
entered in a hyper
ube. The falling through the latti
e is 
learlyvisible from the jump in A(U) and T (U; V ) and shows itself in the dis
ontinuityin A(V ) at �=a � 0:88. Similar �gures are obtained on 
on�gurations 
enteredin a 
ube and a plaquette, respe
tively.As is 
lear from se
tion 2.5 one has large degrees of freedom in parametrizinga FP a
tion, and indeed, we have several equally good parametrizations on theintermediate level being appropriate for 
u
tuations involved in the instanton
on�gurations. It is interesting to see how the minimized 
on�gurations arein
uen
ed by the 
hoi
e of the a
tion in the minimization pro
edure. It turnsout that minimized 
on�gurations di�er signi�
antly from ea
h other: usingsome parametrized FP a
tion on a 
on�guration previously minimized with adi�erent parametrized FP a
tion 
an result in an a
tion de
rease during the �rstsweep as high as 8 � 10�2, however, the a
tion value itself, A(U) + T (U; V ) doesnot di�er more than 1:2% in the end. This is just an artifa
t of our inabilityto parametrized the FP a
tion a

urately enough, but 
onsolidates the expe
-tation that the 
hoi
e of the a
tion should not be 
ru
ial apart from ful�llingsome minimal requirements.Having the �nal parametrization of the FP a
tion at hand, it is interesting tosee how the a
tion performs on generi
 instanton solutions. For this purpose wegenerated several instanton 
on�gurations with varying radii �=a = 1:1; : : : ; 3:0and on di�erent latti
es L = 8; 10; : : : ; 18 a

ording to the pro
edure des
ribedabove. These 
on�gurations are then blo
ked to a 
oarse latti
e and evaluatedwith the parametrized FP a
tion given in table 2.1, and �nally, the results areextrapolated to in�nite volume using formula (B.4). The results for instanton
on�gurations 
entered in a 
ube is shown in �gure 2.2 in se
tion 2.5 and 
om-
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on�gurations 87pared to the results obtained with the Wilson a
tion. Figure B.2 shows thesame for instanton 
on�gurations 
entered in a plaquette.
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Appendix CThe Ferrenberg-SwendsenreweightingIn order to express quantities 
al
ulated on the latti
e in physi
al units onehas to �nd the relation between the 
oupling of the theory and the latti
e 
ut-o� a. This 
an, for instan
e, be a
hieved through a 
al
ulation of the 
riti
al
ouplings �
 for the phase transitions on latti
es with given temporal extent N� .However, the determination of the 
riti
al 
ouplings is in general a deli
ate andsubtle matter and therefore having di�erent methods of determining the 
riti
alpoints of the theory at hand may be of great help.The Ferrenberg-Swendsen reweighting [46, 45℄ is a method for optimizing theanalysis of data from single or multiple Monte Carlo (MC) 
omputer simulationsover wide ranges of parameter values and whi
h is based on ideas �rst proposedby [43, 44℄. The method is appli
able to simulations in latti
e gauge theories aswell as statisti
al me
hani
s. The method allows expli
it error estimates, whi
hin turn provides a 
lear and simple guide for obje
tive planning of the length ofadditional runs and parameter values to be simulated.In se
tion C.1 we will �rst review the Ferrenberg-Swendsen reweighting te
h-nique in the single-histogram 
ase. Then the method is extended in se
tion C.2to the 
ase when data from several MC runs are 
ombined. Throughout thetwo se
tions, simulations of the two-dimensional Ising model will serve as elu
i-dating examples in the 
ase of a se
ond order phase transition. In se
tion C.3�nally, the method is applied to the 10-state Potts model in two dimensions asfor illustration at a �rst order phase transition.C.1 The single-histogram reweightingAll the information about a statisti
al system at a given temperature T = 1=�is 
ontained in the partition fun
tion,Z(�) =Xf�g e��S(�) =XS W (S)e��S ; (C.1)where f�g is the set of all 
on�gurations of the system, S is the energy for agiven 
on�guration andW (S) is the density of states at energy S or the spe
traldensity fun
tion. 90



C.1. The single-histogram reweighting 91The Ferrenberg-Swendsen interpolation or spe
tral density method relies onthe fa
t that the density fun
tion is universal in the sense that it is the same atevery temperature and thus 
ontains in prin
iple all the information about thesystem at any temperature or 
oupling �. In pra
ti
e we 
an estimate the spe
-tral density fun
tion only in some �nite range of energies and we are thereforelimited to a �nite range of 
ouplings near the original simulation point. How-ever, for 
ouplings near 
riti
ality the probability distributions for the statesinvolved are very broad and thus there is a large overlap with typi
al 
on�g-urations at di�erent 
ouplings. Therefore the method is most powerful in thevi
inity of 
riti
ality.Consider now a simulation at 
oupling � with n� measurements. The valueS for the a
tion appeared N�(S) time, i.e. PS N�(S) = n�. We 
an estimatethe probability to �nd a 
on�guration with energy S:P�(S) = W (S)e��SZ(�) � N�(S)n� : (C.2)The same holds true for another arbitrary 
oupling �0:P�0(S) = W (S) e��0SZ(�0) : (C.3)Dividing equations (C.2) and (C.3) we obtainP�0(S) = P�(S) e(���0)S Z(�)Z(�0) : (C.4)The ratio of the two partition fun
tions 
an be written asZ(�0)Z(�) = XS W (S) e��0SZ(�)= XS W (S) e��SZ(�) e(���0)S= XS P�(S) e(���0)S ;and together with equation (C.4) we arrive atP�0(S) = P�(S) e(���0)SPS P�(S) e(���0)S : (C.5)We 
an now 
al
ulate an observable O at any other 
oupling �0 from our simu-lation at �, hOi = 1Z(�0)Xf�g O(�) e��0S(�) (C.6)= 1Z(�0)Xf�gXS Æ(S � S(�))O(�) e��0S (C.7)= XS �O(S)P�0(S); (C.8)



92 Appendix C. The Ferrenberg-Swendsen reweightingwhere the e�e
tive value of the observable at a
tion S reads�O(S) = Pf�g Æ(S � S(�))O(�)W (S) � PN�(S)j=1 O(�j)N�(S) : (C.9)For illustration and for 
he
king the implemented 
ode let us look at thespe
i�
 heat of the Ising model in two dimensions, where the exa
t solution isknown [99℄. In �gure C.1 - C.3 the �lled 
ir
les show the results of three MCsimulations near and at the in�nite volume 
riti
al 
oupling �
 = ln(1+p2)=2.All three simulations used the Swendsen-Wang 
luster algorithm [100℄ with 5000sweeps for equilibration and 30000 measurements on a 162 latti
e. The resultsof the reweighting pro
edure are shown as open 
ir
les and 
ompared to theexa
t 
urve. Error bars are estimated using the bootstrap method. Even withmodest statisti
s we are able to reprodu
e the peak of the spe
i�
 heat withreasonable a

ura
y. Note that the peak is shifted away from �
 due to �nite sizee�e
ts. To understand the deviations from the exa
t 
urve and the in
reasingerror estimates for �-values away from the simulated point it is useful to lookat the energy histograms in �gure C.4. The 
urve labeled with � = �
 isthe histogram from the simulation at the 
riti
al 
oupling and the other twohistograms at � = 0:375 and � = 0:475 are 
omputed from the input histogramby reweighting. For 
omparison we have in
luded the histograms obtained fromthe simulations at � = 0:375 and � = 0:475, indi
ated by the bla
k dots. The�gure 
learly shows that the simulation at �
 for example does not provideenough information about 
on�gurations typi
ally showing up in a simulationat � = 0:375 and thus a reweighting from �
 breaks down at around � = 0:4.This breakdown is also responsible for the in
rease of the error estimates in thereweighted 
urve of the spe
i�
 heat in C.3 for � � 0:4.To take full advantage of the histogram reweighting te
hnique it is advisableto 
ombine the information from di�erent simulations. In the next se
tion wewill explain and illustrate how this 
an be a
hieved in an eÆ
ient way.C.2 The multi-histogram reweightingIn the last se
tion we showed how histograms 
an be used to in
rease the amountof information obtained from a single 
omputer simulation in the neighborhoodof a 
riti
al point. For more general problems, however, it is often ne
essary toperform simulations at more than one parameter value. We will now des
ribean optimized method proposed by Ferrenberg and Swendsen for 
ombining thedata from an arbitrary number of simulations to obtain information over awider range of parameter values. Again the method is appli
able to latti
egauge theory, but for simpli
ity we will illustrate and test the pro
edure on the2D Ising model and later on the q-state Potts model.Let us start with re
alling two simple equations from the single-histogram
ase: P�(S) = W (S) e��SZ(�) � N�(S)n� ; (C.10)W (S) � N�(S)n� Z(�) e�S : (C.11)
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Figure C.1: The spe
i�
 heat of the 2D Ising model 
omputed by reweighting(empty 
ir
les) from a single MC simulation at � = 0:375 (�lled 
ir
le) on a 162latti
e with 30000 measurements. The solid line indi
ates the exa
t result for
omparison.
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Figure C.2: The spe
i�
 heat of the 2D Ising model 
omputed by reweighting(empty 
ir
les) from a single MC simulation at � = 0:475 (�lled 
ir
le) on a 162latti
e with 30000 measurements. The solid line indi
ates the exa
t result for
omparison.
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C.2. The multi-histogram reweighting 95Suppose we have performed MC runs at K di�erent �-values � = �1; �2; : : : ; �Kof length nk, where we measured the frequen
ies Nk(S). For every run there isa partition fun
tion Z(�k) whi
h 
orresponds to the free energy fk � F (�k) ofthe run: F (�k) = � lnZ(�k): (C.12)We 
an write down the (estimated) spe
tral density fun
tion (C.10) for ea
h ofthe K MC runs, Wk(S) � Nk(S)nk Z(�k) e�kS (C.13)= Nk(S)nk e�kS�fk ; (C.14)however, there should be only one unique fun
tion �W (S). To get an improvedestimate for �W (S) one takes a weighted average of the previously de�ned densityfun
tions with the following ansatz:�W (S) � KXk=1 pk(S)Wk(S) with KXk=1 pk(S) = 1: (C.15)Ferrenberg and Swendsen proposed to 
hoose the weights su
h that the errorin the resultant estimate for �W (S) is minimized, assuming that the errors onthe relative frequen
ies Nk(S)=nk is gk=nk = (1 + 2�k)=nk, with �k being theintegrated auto
orrelation time. With this 
ondition one getspk(S) = nkgk e��kS+fkPKl=1 nlgl e��lS+fl (C.16)and �W (S) = PKk=1 Nk(S)gkPKl=1 nlgl e��lS+fl : (C.17)One 
an now 
al
ulate the partition fun
tion at an arbitrary �-value,�Z(�) =XS �W (S)e��S; (C.18)and from this the 
orresponding free energiesfk = � ln �Z(�)����=�k ; (C.19)whi
h have to be regarded as impli
it 
onditions for ea
h of the fk's. We nowgive up the original de�nition, that fk is the free energy of the parti
ular MC runat �k, but instead assume them to be free parameters, using equations (C.18)and (C.19) iteratively to �nd a self-
onsistent solution. EÆ
ient 
onvergen
e isobtained by using the derivatives of the new values of fk as fun
tions of the oldvalues in the iteration pro
ess.The expe
tation value of any observable 
an be 
al
ulated at some arbitrary
oupling �0 using the formulahOi�0 = 1�Z(�0)XS �O(S) �W (S) e��0S : (C.20)



96 Appendix C. The Ferrenberg-Swendsen reweightingIn pra
tise all the formulas are expressed in terms of a
tion di�eren
es and�-value shifts in order to deal with numeri
ally stable quantities.For illustration we again resort to the 2D Ising model and 
al
ulate thereweighted spe
i�
 heat from the two simulations at � = 0:375 and � = 0:475.The impressive result is displayed in �gure C.5. One sees that the error es-timates are small over the whole range of �-values 
onsidered indi
ating thatthe reweighted 
urve is 
al
ulated a

urately enough to determine the 
riti
al
oupling very pre
isely. Indeed, the reweighted 
urve 
oin
ides with the exa
tresult within less than one standard deviation.
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Figure C.5: The spe
i�
 heat of the 2D Ising model 
omputed by reweighting(empty 
ir
les) from two MC simulations at � = 0:375 and � = 0:475 (�lled
ir
les) on a 162 latti
e with 30000 measurements ea
h. The solid line indi
atesthe exa
t result for 
omparison.C.3 Reweighting at �rst order phase transitionsThe me
hanism of the reweighting pro
edure relies on the fa
t that the distribu-tion of 
on�gurations at a given �-value overlaps with the distribution at another�-value. As emphasized in the previous se
tions this feature is even enhan
ednear the 
riti
ality of a se
ond order phase transition, where the probabilitydistributions for the states involved are very broad. Re
e
ting the fa
t thatat a �rst order phase transition, the energy probability distributions shows adouble peak stru
ture (
f. �gure 3.3) it is not obvious from the beginning if theproposed method is as powerful as for a se
ond order phase transition. Indeed,by simulating at a temperature slightly below or above the 
riti
al temperature,we are 
olle
ting information about 
on�gurations in one or the other phase onlyand it is merely exa
tly at the 
riti
al point where we en
ounter 
oexisten
e of



C.3. Reweighting at �rst order phase transitions 97the two distin
t phases and thus have a

ess to information on both phases.As it turns out the diÆ
ulties are relieved due to the fa
t that one has towork on �nite volumes, where the sharp �rst order phase transition is roundedo�. In fa
t, near the 
riti
al temperature the system will jump from one phase tothe other from time to time, then
e yielding information about the probabilitydistributions of 
on�gurations in both phases. As a testing ground for this
laim we have to resort to a statisti
al system whi
h is easy to simulate andwhi
h exhibits a �rst order phase transition. Su
h a model is provided by ageneralization of the Ising model in two dimensions, the q-state Potts model[101℄. The model is de�ned through the HamiltonianHPotts = ��Xhiji Æ�i�j ; �i � 1; : : : ; q; (C.21)where Phiji denotes the sum over all nearest neighbors, and where we re
overthe Ising model by setting q = 2. In two dimensions the system is exa
tly knownto exhibit a se
ond order phase transition for q � 4 and a �rst order transitionfor all q � 5 [102℄1. Sin
e the �rst order phase transition is known to be weakfor small q, we 
hoose q = 10 in our study.Let us �rst look at the energy probability distribution of the system. In�gure C.6 we display the energy distribution of a simulation at � = 1:405near the �nite volume 
riti
al 
oupling. The other two histograms are the

50 150 250
− energy

0

0.02

0.04

0.06

0.08

en
er

gy
 p

ro
ba

bi
lit

y

β=1.375

β=1.425

β=1.405

Figure C.6: The energy histogram at the simulation point � = 1:405 near the
riti
al 
oupling and the ones reweighted to � = 1:375 and � = 1:425. Thebla
k dots indi
ate the histograms obtained in additional simulations at thesetemperatures.energy distributions obtained by reweighting to � = 1:375 and � = 1:425, while1In three dimensions the model enjoys a �rst order phase transition for all q � 3.



98 Appendix C. The Ferrenberg-Swendsen reweightingthe bla
k dots show the results of the 
orresponding additional simulations for
omparison. In all simulations we use the Metropolis update algorithm on a 122latti
e with 104 sweeps for equilibration and 104 measurements on 106 sweeps.The quantitative 
oin
iden
e of the reweighted distributions with the simulatedones is very 
onvin
ing even in the tails of the distributions.As a �nal 
he
k let us look at the magneti
 sus
eptibility of the system.As opposed to the Ising model in two dimensions no exa
t solution is knownfor th q-state Potts model. Therefore we 
ompare the result obtained fromthe reweighting to additional simulations near the estimated 
riti
al tempera-ture2. In �gure C.7 the �lled 
ir
les denote the results of two MC simulationsat � = 1:375 and � = 1:425 and the solid line shows the results obtained byreweighting the data from the two simulations. Error bars and bands are 
al-
ulated using a bootstrap pro
edure. The empty 
ir
les show the results ofadditional simulations at several 
ouplings around the 
riti
al value. For 
laritythe region around the peak is enlarged in �gure C.8, where we also in
lude the
urve obtained by reweighting the data from the additional simulations. Asin the Ising model the sus
eptibility peak 
an be reprodu
ed with an amazinga

ura
y. Indeed, if we determine the 
riti
al 
oupling as the lo
ation of thesus
eptibility peak we obtain �
 = 1:4051(11) from the simulations at � = 1:375and � = 1:425 and �
 = 1:4050(4) from the additional simulations.
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 sus
eptibility of the 2D 10-state Potts model on a 122latti
e. The reweighted 
urve (solid line) is 
omputed from MC simulations � =1:375 and � = 1:425 (�lled 
ir
le) and 
ompared to additional MC simulations(empty 
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les).2Although the 
riti
al 
oupling for the q-state Potts model is known exa
tly in the ther-modynami
 limit, �
 = ln(1+pq), we 
an not rely on this value due to the 
onsiderable �nitevolume shift.
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Appendix DExtra
ting masses from
orrelation fun
tionsIt is well known that energies of parti
les and gauge strings 
an be extra
tedfrom 
orrelation fun
tions of operators having appropriate quantum numbers.Here we are 
on
erned in parti
ular with the extra
tion of parti
le and stringmasses, then
e it suÆ
es to 
onsider 
orrelation fun
tions with zero momentumonly and we suppress the momentum dependen
e in the following. In Eu
lideanspa
e with a latti
e periodi
 in time T we haveh0jO(t)Oy(0)j0i � C(t) =Xn Zne�Ent (D.1)for Wilson loop 
orrelators andC(t) =Xn Zn �e�Ent + e�En(T�t)� (D.2)for glueballs and mesons1. The energy spe
trum 
an in prin
iple be extra
tedfrom the 
orrelation fun
tions. In parti
ular, only the lightest state survives atlarge times, limlargetC(t) � � e�E0t Wilson loops;e�E0t + e�E0(T�t) mesons, glueballs; (D.3)and thus the ground state energy 
an be determined from the exponential de
ayof the 
orrelation fun
tion at large times.The primary diÆ
ulty in this stage is one of reliably identifying the regionsof time sli
es where the 
orrelator takes the asymptoti
 form in equation (D.3),i.e. identifying the plateau region. For �nite values of t we always have ex
itedstate 
ontributions and therefore it is of 
ru
ial importan
e to have an operatorwith large overlap to the ground state. For this purpose di�erent operatorsOn having the same quantum numbers are measured and a linear 
ombinationis 
onstru
ted in order to disentangle the ground state 
ontribution from the1This relation only holds for parti
les with integer spin and is slightly modi�ed for spin-1/2 parti
les like baryons, where forwardly and ba
kwardly propagating parti
les have to bedistinguished. 100



D.1. Variational te
hniques 101ex
ited state 
ontributions. To determine the appropriate linear 
ombinationwe invoke variational te
hniques whi
h are des
ribed in detail in the �rst se
tionof this appendix.On
e the ex
ited state 
ontributions are unraveled from the ground state aplateau region is identi�ed and one 
an extra
t the ground state mass by either
al
ulating the e�e
tive mass,me�(t) = � ln�C(t+ 1)C(t) � ; (D.4)in the plateau region or �tting the ground state 
orrelation fun
tion C(t) to anansatz of the form given in equation (D.1) or (D.2). This issue is given further
onsideration in the se
ond se
tion of this appendix.D.1 Variational te
hniquesIn a simulation we estimate the elements of the N �N 
orrelation matrix usingthe Monte Carlo (MC) method,C��(t) = h0jO�(t)Oy�(0)j0i; (D.5)where the rank N of the matrix depends on the number of smearing s
hemesand the number of operators under 
onsideration. The 
oeÆ
ients v� in thelinear 
ombinationPN�=1 v�O� with the largest overlap to the ground state aredetermined by minimizing the e�e
tive mass2,m(t0; t1) = � ln� (v; C(t1)v)(v; C(t0)v)� =(t1 � t0): (D.6)This is equivalent to solving a generalized eigenvalue equation,C(t1)v = e�E(t1�t0)C(t0)v; (D.7)whi
h is well de�ned only for positive de�nite C(t0). In general, however, pos-itiveness of C(t0) is not automati
ally ful�lled for t0 � 1, but 
an be a
hievedin the following way.We �rst diagonalize C(t0),C(t0)'i = �i'i; �1 � : : : � �N ; (D.8)and proje
t the 
orrelation matri
es to the spa
e of eigenve
tors 
orrespondingto the M highest eigenvalues,CMij (t) = ('i; C(t)'j); i; j = 1; : : : ;M: (D.9)By 
hoosing the operator spa
e too large we introdu
e numeri
al instabilities
aused by very small (even negative) eigenvalues with large statisti
al errorsdue to the fa
t that the 
hosen operator basis is not independent on the givenMC sample. By 
hoosing M appropriately we 
an get rid of those unphysi
al2In the following we use matrix notation for C��(t) and suppress the indi
es whenever itis appropriate.
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ting masses from 
orrelation fun
tionsmodes while still keeping all the physi
al information. In this way we renderthe generalized eigenvalue problem well de�ned.Of 
ourse the �nal result should not depend on the 
hoi
e of M and one hasto take 
are in ea
h 
ase that this is really so. Our observation is that for anya

eptable statisti
s one always �nds a plateau in M for whi
h the extra
tedmasses are stable under variation of M .Note that the above pro
edure is not ne
essary for the 
hoi
e t0 = 0 sin
eC(t0 = 0) is positive de�nite by de�nition. However, determining the operatorbasis from C(t0 = 0) and C(t1 = 1) in eq. (D.7) is under suspi
ion of 
ontaininglittle physi
al information about the 
orrelation lengths, sin
e C(t0 = 0) a
tuallyjust des
ribes the relative normalization of the operators. This is the reason for
hoosing t0 = 1; t1 = 2 in our analysis whenever it is possible3.In a next step we determine the ve
tors vn; n = 1; : : : ;M through the gen-eralized eigenvalue equation (the index � = 1; : : : ;M is suppressed)CM (t1)vn = e�En(t1�t0)CM (t0)vn; E1 � : : : � EM ; (D.10)and proje
t the 
orrelation matri
es CM (t) again to the eigenspa
e 
orrespond-ing to the K �M highest eigenvalues, i.e. the K �M lowest energies,CKij (t) = (vi; CM (t)vj); i; j = 1; : : : ;K �M; (D.11)for the data-�tting phase. The trun
ated 
orrelation matri
es CKij (t) are �ttedin the range t = tmin : : : tmax using the ansatzCij(t; f ;mg) = K0Xn=1 ni �nje�mnt Wilson loops (D.12)for the Wilson loop 
orrelators andCij(t; f ;mg) = K0Xn=1 ni �nj(e�mnt + e�mn(T�t)) glueballs (D.13)for the glueball 
orrelators. In both formulas,  ni � (CK(t0)vn)i and K 0 6= Kin general.For all pra
ti
al purposes we 
hoose K 0 = K = 1 to obtain an energyestimate of the lowest-lying state and K 0 = K = 2 for an energy estimate ofthe �rst-ex
ited state and an additional estimate of the ground-state energy.In
reasing K 0 = K allows to 
he
k for the stability of the energy estimate of thelowest-lying state. In the glueball analysis we 
hoose K 0 = K = 2 or 3 for theA++1 -
hannel where we also �t the va
uum energy and its wave fun
tion sin
ewe do not subtra
t the va
uum 
ontribution hO�ihOy�i from the 
orrelators, 
f.remarks in se
tion 5.4.D.2 Correlated �tsThe standard way to �t a fun
tional form to a set of data is to minimize ameasure of the goodness of the �t as a fun
tion of the �t parameters su
h as3It is prevented only by badly measured operators due to insuÆ
ient statisti
s.



D.2. Correlated �ts 103f ;mg given above. If this pro
edure is to be a meaningful test of the �ttingfun
tion, su
h a measure must take into a

ount all kind of 
orrelations in thedata Cij(t) between di�erent operators at di�erent time sli
es. In all our �ts weuse the 
orrelated �2-fun
tion where the 
orrelation between the data points isa

ounted for with the 
ovarian
e matrix (Cov),�2(f ni;mng) =XijklXt;t0 �Cij(t)� Cij(t; f ;mg)�(Cov)�1ijt;klt0�Ckl(t0)� Ckl(t0; f ;mg)�; (D.14)where the sum Pijkl is over i � j and k � l only and Pt;t0 is meant as asum over the �tting range t; t0 = tmin : : : tmax. The (symmetri
) data 
ovarian
ematrix is de�ned as(Cov)ijt;klt0 = 1N(N � 1) NXk=1 �C(k)ij (t)� hCij(t)i��C(k)kl (t0)� hCkl(t0)i� :(D.15)Here the sum is over N 
on�gurations or bins, C(k)ij (t) denotes the value of the
orrelation matrix element i; j at time sli
e t from 
on�guration or bin k andhCij (t)i = 1=NPNk=1 C(k)ij (t). To prevent the 
ovarian
e matrix from gettingtoo large it is 
al
ulated only in the last step of the analysis, i.e. when the full
orrelation matrix is trun
ated down to the small K�K matrix CK(t) and the�tting range tmin : : : tmax is spe
i�ed. The smallness of the 
ovarian
e matrixis even more important regarding the fa
t that the number N of 
on�gurationsor bins must be at least as large as the number of 
olumns of the 
ovarian
ematrix sin
e otherwise it 
ontains repeated 
olumns and is rendered singular.For linear statisti
s � it is easy to show that the 
ovarian
e matrix 
an be
al
ulated dire
tly from the Ja
kknife samples, say �(k), through the formula(Cov)ij = N � 1N NXk=1(�(k)i � �(:)i )(�(k)j � �(:)j ); (D.16)where �(:)i = 1=NPNk=1 �(k)i is the average of the Ja
kknife samples. For non-linear statisti
s, however, the relation no longer holds true but the r.h.s. 
anstill be used as an estimate for the elements of the 
ovarian
e matrix. Equation(D.16) turns out to be most 
onvenient for the analysis of the glueball 
orrelationmatri
es where we are dealing with a large number of operators and thereforeworking with Ja
kknife instead of Bootstrap samples due to memory and speedlimitations.



Appendix EThe 
ubi
 point group OhOn a 
ubi
 latti
e the rotation symmetry is broken down to the symmetry groupof a 
ube, the 
ubi
 (or o
tahedral) group O 
onsisting of 24 dis
rete rotations.In addition to the transformations of the 
ubi
 group we 
onsider the dis
retesymmetry of total spatial inversion of whi
h the eigenvalues are denoted byparity P = �1. Combining these transformations we obtain the 
ubi
 pointgroup Oh = O � Z2 
ontaining 48 group elements.E.1 The group elements of OhThe notation for the rotations follows [103℄, E denoting the unity element, Cnjdenoting a proper rotation through 2�=n in the right-hand s
rew sense aboutthe axis Oj and I denoting the spatial inversion operator. All the axes involvedare indi
ated in �gure E.1.
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Figure E.1: The rotation axes Oa;Ob;O
;Od;Oe;Of;Ox;Oy;Oz;O�;O�;O
and OÆ.An element T 0 of a group G is said to be 
onjugate to another element T ofG if there exists an element X of G su
h thatT 0 = XTX�1: (E.1)104



E.1. The group elements of Oh 105A set of mutually 
onjugate elements of G is 
alled a 
onjuga
y 
lass. A 
lass
an be 
onstru
ted from any T�G by forming the set of produ
ts XTX�1 forea
h X�G, keeping only the distin
t elements. It is 
lear that, for example, theidentity E forms a 
lass by its own.In the following the elements of the 
ubi
 point group are listed in 
onjuga
y
lasses: C1 = fEg;C2 = fC3�; C3� ; C3
g; C3Æ; C�13� ; C�13� ; C�13
 ; C�13Æ g;C3 = fC2x; C2y ; C2zg;C4 = fC4x; C4y ; C4z; C�14x ; C�14y ; C�14z g;C5 = fC2a; C2b; C2
; C2d; C2e; C2fg;C6 = fIg; (E.2)C7 = fIC3�; IC3� ; IC3
 ; IC3Æ ; IC�13� ; IC�13� ; IC�13
 ; IC�13Æ g;C8 = fIC2x; IC2y ; IC2zg;C9 = fIC4x; IC4y ; IC4z; IC�14x ; IC�14y ; IC�14z g;C10 = fIC2a; IC2b; IC2C ; IC2d; IC2e; IC2fg:Of spe
ial interest in the 
ontext of irredu
ible representations are the fol-lowing theorems :Theorem 1 For a �nite group G the number of inequivalent irredu
ible repre-sentations is equal to the number of 
lasses of G.Theorem 2 For a �nite group G, the sum of squares of the dimensions of theinequivalent irredu
ible representations is equal to the order of G.Taking together both theorems, it is suÆ
ient in the 
ase of the 
ubi
 pointgroup Oh to spe
ify the dimensions of the inequivalent irredu
ible representa-tions. From Theorem 1 it follows that there are �ve inequivalent irredu
iblerepresentations for the 
ubi
 group, �p; p = 1; : : : 5, and ten for the 
ubi
 pointgroup, respe
tively. In the 
ase of the 
ubi
 group Theorem 2 amounts to theequation 5Xp=1 d2p = 24; (E.3)where dp denotes the dimension of the 
orresponding irredu
ible representation�p. The equation has a unique solution given by fn1 = n2 = 1; n3 = 2; n4 =n5 = 3g and thereby yielding a unique spe
i�
ation of the dimensions of theirredu
ible representations of the 
ubi
 group. The solution is trivially extendedto the 
ubi
 point group sin
e the additional irredu
ible representations are
onne
ted to the ones of the 
ubi
 group by the parity transformation.In the following one-dimensional representations are denoted by A, two-dimensional irredu
ible representations by E and three-dimensional irredu
iblerepresentations by T with supers
ripts � indi
ating representations that areeven and odd under the parity transformation I , respe
tively.



106 Appendix E. The 
ubi
 point group OhE.2 The 
hara
ter tableThe 
hara
ters are a set of quantities whi
h are the same for all equivalent repre-sentations. For �nite groups (and 
ompa
t Lie groups) they uniquely determinethe representations up to equivalen
e, in parti
ular they provide a 
ompletespe
i�
ation of the irredu
ible representations that appear in a redu
ible repre-sentation �.The number of times np that an irredu
ible representation �p appears in aredu
ible representation �, � = n1�1 � n2�2 � : : : ; (E.4)is given for a �nite group G bynp = 1gXT�G �(T )�p(T )�; (E.5)where �(T ) and �p(T ) are the 
hara
ters of � and �p, respe
tively, and g is theorder of the group G. Note that for matrix representations the 
hara
ter of agroup element, �(T ), is simply given by the tra
e of the 
orresponding matrixrepresentative and that the 
hara
ter is the same for all elements in a given
onjuga
y 
lass.In table E.2 we list for ea
h irredu
ible representation �1; : : : ;�10 of the
ubi
 point group the 
hara
ters of the 
onjuga
y 
lasses C1; : : : ; C10.C1 C2 C3 C4 C5 C6 C7 C8 C9 C10�1 A+1 1 1 1 1 1 1 1 1 1 1�2 A+2 1 1 1 -1 -1 1 1 1 -1 -1�3 E+ 2 -1 2 0 0 2 -1 2 0 0�4 T+1 3 0 -1 1 -1 3 0 -1 1 -1�5 T+2 3 0 -1 -1 1 3 0 -1 -1 1�6 A�1 1 1 1 1 1 -1 -1 -1 -1 -1�7 A�2 1 1 1 -1 -1 -1 -1 -1 1 1�8 E� 2 -1 2 0 0 -2 1 -2 0 0�9 T�1 3 0 -1 1 -1 -3 0 1 -1 1�10 T�2 3 0 -1 -1 1 -3 0 1 1 -1Table E.1: Chara
ter table for the 
ubi
 point group.E.3 Wave fun
tions of glueball operatorsIn this se
tion we list the orthogonal wave fun
tions of the irredu
ible operatorswhi
h 
an be built from some of the Wilson loop shapes up to length eight. Theloop shape numbers 
orrespond to the ones in �gure 5.1. Ea
h row 
orrespondsto a given orientation of the loop shape under 
onsideration. Notation is �xedthrough ordering the orientations in the following way. We 
onstru
t a loopshape prototype with the path �rst going in 1-, then in 2- and �nally, if ne
essary,in 3-dire
tion as displayed in �gure 5.1. From this referen
e orientation all othersare generated by applying the group elements in the order as given in (E.2). Care



E.3. Wave fun
tions of glueball operators 107has to be taken not to generate orientations equivalent up to translations. Thenumbers in ea
h row denote the 
ontribution of the spe
i�
 orientation to thewave fun
tion in question. Suitable normalization fa
tors are understood and,a

ording to C-parity C = �1, the real or imaginary part has to be taken.Consider now an example expli
itly and take a look at the single plaquetteoperator (loop shape #1). The three (positive) orientations of the single pla-quette 
an be labeled as O12; O13 and O23. The �rst E++ wave fun
tion is then
onstru
ted as OE++ = 2O12 �O13 �O23.The two and three wave fun
tions in the E- and T -
hannels, respe
tively, aredegenerate states having the same quantum numbers and 
an thus be regardedas di�erent "polarizations" belonging to the same "spin state" and transformingamong ea
h other under the 
ubi
 point group. The freedom in the 
hoi
e ofthe orthogonal basis fun
tions 
an be used to 
onstru
t basis fun
tions whi
hare simultaneous eigenfun
tions of mutually 
ommuting group elements.Thus for the irredu
ible representations of dimension greater than one (E; T1and T2) we have 
hosen a basis of wave fun
tions whi
h are simultaneous eigen-fun
tions under the group elements C2x; C2y; C2z and their parity transformedpartners. In the E-
hannel the wave fun
tions are in addition eigenfun
tionsunder C4z ; C�14z ; C2a; C2b and the 
orresponding parity transformed group ele-ments.In the following tables on page 107 { 113 we list the orthogonal wave fun
-tions of the irredu
ible operators whi
h 
an be built from Wilson loops up tolength eight. Note that the expressions for loop shape #8, 9, 11, 18, 20 and 22are too lengthy and 
an thus not be displayed.loop shape #1A++1 1 1 1E++ 2 -1 -10 1 -1T+�1 0 0 10 1 01 0 0loop shape #2A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 2 -1 -1 -1 -1 20 1 -1 1 -1 0E++ 0 1 -1 -1 1 0-2 1 1 -1 -1 2T+�1 0 0 1 0 1 00 1 0 1 0 01 0 0 0 0 1T+�2 1 0 0 0 0 -10 0 1 0 -1 00 -1 0 1 0 0



108 Appendix E. The 
ubi
 point group Ohloop shape #3A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 -2 -2 -2 -2 1 1 1 1 1 1 11 0 0 0 0 -1 -1 -1 -1 1 1 1T++2 0 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 -1 1 10 0 0 0 0 -1 1 1 -1 0 0 0T�+1 0 1 -1 -1 1 1 -1 1 -1 0 0 0-1 -1 -1 1 1 0 0 0 0 1 -1 1-1 0 0 0 0 -1 -1 1 1 1 1 -1T�+2 1 0 0 0 0 -1 -1 1 1 -1 -1 10 1 -1 -1 1 -1 1 -1 1 0 0 01 -1 -1 1 1 0 0 0 0 -1 1 -1T+�1 0 1 -1 1 -1 1 -1 -1 1 0 0 0-1 -1 -1 -1 -1 0 0 0 0 -1 1 1-1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1T+�2 1 0 0 0 0 -1 -1 -1 -1 1 1 10 1 -1 1 -1 -1 1 1 -1 0 0 01 -1 -1 -1 -1 0 0 0 0 1 -1 -1A��1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1E�� 1 -2 -2 2 2 1 1 -1 -1 -1 -1 11 0 0 0 0 -1 -1 1 1 -1 -1 1T��2 0 1 -1 -1 1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 10 0 0 0 0 -1 1 -1 1 0 0 0loop shape #4A++1 1 1 1 1T++2 1 -1 -1 11 -1 1 -1-1 -1 1 1A+�2 1 -1 -1 1T+�1 1 1 -1 -11 -1 1 -11 1 1 1loop shape #5A++1 1 1 1E++ 2 -1 -10 1 -1T+�1 0 0 10 1 01 0 0
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loop shape #6A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 -2 -2 -2 -2 1 1 1 1 1 1 11 0 0 0 0 -1 -1 -1 -1 1 1 1T++2 0 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 -1 1 10 0 0 0 0 -1 1 1 -1 0 0 0T�+1 0 1 -1 -1 1 1 -1 1 -1 0 0 0-1 -1 -1 1 1 0 0 0 0 1 -1 1-1 0 0 0 0 -1 -1 1 1 1 1 -1T�+2 1 0 0 0 0 -1 -1 1 1 -1 -1 10 1 -1 -1 1 -1 1 -1 1 0 0 01 -1 -1 1 1 0 0 0 0 -1 1 -1T+�1 0 1 -1 1 -1 1 -1 -1 1 0 0 0-1 -1 -1 -1 -1 0 0 0 0 -1 1 1-1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1T+�2 1 0 0 0 0 -1 -1 -1 -1 1 1 10 1 -1 1 -1 -1 1 1 -1 0 0 01 -1 -1 -1 -1 0 0 0 0 1 -1 -1A��1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1E�� 1 -2 -2 2 2 1 1 -1 -1 -1 -1 11 0 0 0 0 -1 -1 1 1 -1 -1 1T��2 0 1 -1 -1 1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 10 0 0 0 0 -1 1 -1 1 0 0 0
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ubi
 point group Oh
loop shape #7A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 20 1 1 1 1 -1 -1 -1 -1 0 0 0T++2 1 0 0 0 0 0 0 0 0 -1 -1 10 0 0 0 0 -1 1 -1 1 0 0 00 -1 -1 1 1 0 0 0 0 0 0 0T�+1 1 1 -1 -1 1 0 0 0 0 1 -1 -1-1 0 0 0 0 -1 1 1 -1 1 -1 10 -1 1 -1 1 -1 -1 1 1 0 0 0T�+2 0 1 -1 1 -1 -1 -1 1 1 0 0 0-1 1 -1 -1 1 0 0 0 0 -1 1 11 0 0 0 0 -1 1 1 -1 -1 1 -1A+�2 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1E+� 0 1 -1 -1 1 1 -1 -1 1 0 0 02 1 -1 -1 1 -1 1 1 -1 2 -2 -2T+�1 0 0 0 0 0 1 1 -1 -1 0 0 00 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 1T��1 1 1 1 1 1 0 0 0 0 1 1 11 0 0 0 0 -1 -1 -1 -1 -1 -1 10 1 1 -1 -1 1 -1 1 -1 0 0 0T��2 0 1 1 -1 -1 -1 1 -1 1 0 0 01 -1 -1 -1 -1 0 0 0 0 1 1 11 0 0 0 0 1 1 1 1 -1 -1 1
loop shape #10A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 2 -1 -1 -1 -1 20 1 -1 1 -1 0E++ 0 1 -1 -1 1 0-2 1 1 -1 -1 2T+�1 0 0 1 0 1 00 1 0 1 0 01 0 0 0 0 1T+�2 1 0 0 0 0 -10 0 1 0 -1 00 -1 0 1 0 0
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loop shape #12A++1 1 1 1 1 1 1 1 1 1 1 1 1A++2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1E++ 2 -1 -1 -1 -1 2 -1 -1 2 -1 -1 20 1 1 -1 -1 0 1 -1 0 1 -1 0E++ 0 1 1 -1 -1 0 -1 1 0 -1 1 0-2 1 1 1 1 -2 -1 -1 2 -1 -1 2T++1 0 0 0 1 -1 0 0 1 0 0 -1 00 -1 1 0 0 0 1 0 0 -1 0 0-1 0 0 0 0 1 0 0 -1 0 0 1T++2 1 0 0 0 0 -1 0 0 -1 0 0 10 0 0 -1 1 0 0 1 0 0 -1 00 -1 1 0 0 0 -1 0 0 1 0 0T+�1 1 0 0 0 0 -1 1 0 0 -1 0 00 0 0 -1 1 0 0 0 1 0 0 10 1 1 0 0 0 0 1 0 0 -1 0T+�1 0 1 -1 0 0 0 0 0 -1 0 0 11 0 0 0 0 1 0 1 0 0 1 00 0 0 1 1 0 1 0 0 1 0 0T+�2 0 1 1 0 0 0 0 -1 0 0 1 01 0 0 0 0 -1 -1 0 0 1 0 00 0 0 1 -1 0 0 0 1 0 0 1T+�2 0 0 0 1 1 0 -1 0 0 -1 0 00 1 -1 0 0 0 0 0 1 0 0 -1-1 0 0 0 0 -1 0 1 0 0 1 0
loop shape #13A++1 1 1 1 1 1 1E++ 1 1 1 -2 -2 1-1 1 1 0 0 -1T�+2 0 0 0 1 -1 00 -1 1 0 0 0-1 0 0 0 0 1T+�1 0 1 -1 0 0 01 0 0 0 0 10 0 0 1 1 0A��2 1 -1 -1 1 -1 -1E�� 1 1 1 0 0 -11 -1 -1 -2 2 -1



112 Appendix E. The 
ubi
 point group Ohloop shape #14A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 -2 -2 -2 -2 1 1 1 1 1 1 11 0 0 0 0 -1 -1 -1 -1 1 1 1T++1 0 1 -1 -1 1 -1 1 -1 1 0 0 0-1 1 1 -1 -1 0 0 0 0 1 -1 11 0 0 0 0 -1 -1 1 1 -1 -1 1T++2 1 0 0 0 0 1 1 -1 -1 -1 -1 10 -1 1 1 -1 -1 1 -1 1 0 0 0-1 -1 -1 1 1 0 0 0 0 1 -1 1T++2 0 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 -1 1 10 0 0 0 0 -1 1 1 -1 0 0 0A+�2 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1E+� 1 0 0 0 0 -1 -1 1 1 -1 -1 1-1 -2 2 -2 2 -1 -1 1 1 1 1 -1T+�1 1 0 0 0 0 0 0 0 0 -1 1 -10 0 0 0 0 -1 1 -1 1 0 0 00 1 1 1 1 0 0 0 0 0 0 0T+�1 0 1 1 -1 -1 -1 1 1 -1 0 0 01 -1 1 1 -1 0 0 0 0 1 -1 -11 0 0 0 0 1 1 1 1 1 1 1T+�2 1 0 0 0 0 -1 -1 -1 -1 1 1 10 -1 -1 1 1 -1 1 1 -1 0 0 01 1 -1 -1 1 0 0 0 0 1 -1 -1loop shape #15A++1 1 1 1E++ 2 -1 -10 1 -1T+�1 0 0 10 1 01 0 0loop shape #16A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 2 -1 -1 -1 -1 20 1 -1 1 -1 0E++ 0 1 -1 -1 1 0-2 1 1 -1 -1 2T��1 0 1 0 0 0 11 0 0 0 -1 00 0 -1 -1 0 0T��2 0 0 1 -1 0 00 -1 0 0 0 11 0 0 0 1 0



E.3. Wave fun
tions of glueball operators 113loop shape #17A++1 1 1 1 1 1 1E++ 2 -1 -1 -1 -1 20 1 1 -1 -1 0T++2 1 0 0 0 0 -10 0 0 -1 1 00 -1 1 0 0 0T��1 1 1 1 0 0 11 0 0 -1 -1 -10 1 -1 1 -1 0T��2 0 1 -1 -1 1 01 -1 -1 0 0 11 0 0 1 1 -1

loop shape #19A++1 1 1 1 1 1 1E++ 2 -1 -1 -1 -1 20 1 1 -1 -1 0T++2 1 0 0 0 0 -10 0 0 -1 1 00 -1 1 0 0 0A+�2 1 1 -1 -1 1 -1E+� 0 1 -1 1 -1 0-2 1 -1 -1 1 2T+�1 0 0 0 1 1 00 1 1 0 0 01 0 0 0 0 1
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ubi
 point group Oh
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Appendix FColle
tion of dataF.1 Data from the stati
 potential� �t range V0 � � �2=NDF3.400 2 - 6 0.7805(7) -0.251(9) 0.0629(13) 1.023.150 2 - 5 0.820(15) -0.286(19) 0.0992(27) 0.753.150 2 - 6 0.804(14) -0.264(17) 0.1017(25) 1.032.927 2 - 6 0.812(16) -0.272(20) 0.1606(33) 1.352.860 1 - 4 0.8007(48) -0.2623(33) 0.1885(17) 1.172.860 2 - 4 0.789(38) -0.291(43) 0.1844(72) 1.412.680 1 - 4 0.7766(52) -0.2547(37) 0.2871(15) 0.432.680 2 - 6 0.778(41) -0.256(54) 0.2868(70) 0.652.361 1 - 4 0.615(11) -0.1791(78) 0.6286(37) 0.992.361 2 - 5 0.59(11) -0.15(13) 0.634(22) 1.41Table F.1: Results from 
orrelated �ts of the form (4.4) to the stati
 quarkpotentials. The se
ond 
olumn indi
ates the �t range in r and the last two
olumns the value of 
 from whi
h r0 is determined through (4.5) and �2 perdegree of freedom, �2=NDF, respe
tively.
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116 Appendix F. Colle
tion of data
� r Nop �t range V (r) �2=NDF3.400 1 5 2 - 6 0.5874(2) 0.762 5 2 - 6 0.7804(5) 2.193 5 3 - 6 0.885(2) 1.274 3 3 - 6 0.969(3) 1.245 4 2 - 6 1.046(4) 0.916 4 2 - 5 1.116(8) 0.387 3 3 - 6 1.17(2) 0.183.150 1 5 3 - 5 0.6405(3) 0.772 4 2 - 6 0.8756(5) 0.633 5 2 - 6 1.022(2) 0.434 3 2 - 5 1.147(2) 0.155 3 2 - 6 1.258(3) 0.846 3 2 - 6 1.38(1) 1.082.927 1 4 2 - 7 0.7032(2) 0.422 3 2 - 7 0.9969(5) 0.653 3 2 - 7 1.202(2) 0.564 4 2 - 5 1.383(5) 0.315 3 2 - 7 1.560(8) 0.816 3 2 - 5 1.71(2) 0.827 2 2 - 6 1.92(3) 1.282.860 1 3 2 - 4 0.7267(4) 1.502 3 1 - 4 1.047(1) 0.563 4 1 - 4 1.278(2) 0.684 2 2 - 4 1.488(5) 0.305 3 2 - 4 1.67(2) 0.682.680 1 4 2 - 6 0.8091(3) 0.212 4 2 - 6 1.2231(9) 0.983 4 2 - 6 1.553(3) 0.334 3 1 - 5 1.862(3) 0.335 2 2 - 6 2.15(3) 0.896 2 2 - 5 2.51(8) 0.142.361 1 3 2 - 5 1.0641(6) 0.332 3 1 - 6 1.783(1) 0.313 2 1 - 5 2.443(4) 0.754 2 1 - 6 3.09(2) 0.845 1 1 - 5 3.73(6) 2.316 1 1 - 6 4.5(3) 0.44Table F.2: Potential values extra
ted from �ts of the form Z(r) exp(�tV (r)) tothe ground state of the Wilson loop 
orrelators. Note that t0 = 1 and t1 = 2was 
hosen in all 
ases. The 
olumn entitled with Nop denotes the number ofoperators kept after the �rst trun
ation.



F.2. Data from the glueball simulations 117F.2 Data from the glueball simulationsChannel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 6 1 - 4 0.79 0.836(23)0/1 30 1 - 4 0.54 0.835(20)E++ 1/2 11 1 - 4 0.03 1.233(48)8 1 - 4 0.19 1.271(34)0/1 60 1 - 4 0.02 1.232(23)T++2 1/2 5 1 - 4 0.40 1.234(28)7 1 - 4 0.16 1.202(31)0/1 48 1 - 4 1.16 1.247(21)A�+1 1/2 3 1 - 3 0.24 1.395(86)0/1 15 1 - 3 0.12 1.458(52)15 2 - 4 0.10 1.38(20)E�+ 1/2 3 1 - 3 0.34 1.681(72)T�+2 1/2 4 1 - 3 0.09 1.631(72)T+�1 1/2 8 1 - 3 2.49 1.64(16)6 1 - 3 0.17 1.76(10)0/1 25 1 - 3 0.07 1.654(55)Table F.3: Results from �ts to the � = 3:40 glueball 
orrelators on the 144latti
e obtained from the large simulation.Channel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 5 1 - 3 0.50 0.831(33)2/3 3 1 - 3 0.50 0.839(32)0/1 7 1 - 3 0.94 0.813(27)Table F.4: Results from �ts to the � = 3:40 glueball 
orrelators on the 144latti
e obtained from the small simulation where only �ve loop shapes weremeasured on �ve smearing s
hemes.



118 Appendix F. Colle
tion of data
Channel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 5 1 - 3 0.61 1.034(33)2 - 3 0.00 1.10(10)1 - 4 2.02 1.032(32)2 - 4 1.07 1.12(11)0/1 25 1 - 4 1.62 1.017(28)2 - 4 0.02 1.119(92)E++ 1/2 4 1 - 3 1.26 1.534(62)0/1 48 1 - 3 1.41 1.455(45)T++2 1/2 4 1 - 3 0.68 1.609(55)0/1 48 2 - 4 1.32 1.83(23)A�+1 1/2 3 1 - 3 0.84 1.65(18)E�+ 1/2 3 1 - 3 0.00 1.97(20)0/1 15 1 - 3 0.09 2.06(16)T�+2 1/2 5 1 - 3 0.00 1.39(27)0/1 22 1 - 3 0.00 1.92(11)T+�1 1/2 4 1 - 3 2.70 2.10(18)0/1 25 1 - 3 0.05 2.04(12)Table F.5: Results from �ts to the � = 3:15 glueball 
orrelators on the 124latti
e.
Channel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 3 1 - 4 0.02 1.411(96)2 - 4 0.02 1.40(38)0/1 25 1 - 4 0.56 1.378(80)2 - 4 0.36 1.50(40)Table F.6: Results from �ts to the � = 2:86 glueball 
orrelator on the 104latti
e. Only �ve loop shapes were measured on 5 di�erent smearing s
hemes.
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