
Lattie Gauge Theory withFixed Point Ations

Inauguraldissertationder Philosophish-naturwissenshaftlihen Fakult�atder Universit�at Bernvorgelegt vonUrs Wengervon Str�attligen (BE)Leiter der Arbeit: Prof. P. HasenfratzInstitut f�ur theoretishe PhysikUniversit�at Bern





Lattie Gauge Theory withFixed Point Ations
Inauguraldissertationder Philosophish-naturwissenshaftlihen Fakult�atder Universit�at Bernvorgelegt vonUrs Wengervon Str�attligen (BE)Leiter der Arbeit: Prof. P. HasenfratzInstitut f�ur theoretishe PhysikUniversit�at BernVon der Philosophish-naturwissenshaftlihen Fakult�at angenommen.
Bern, den 18. Mai 2000

Der Dekan:
Prof. Dr. A. P��ner





Contents
1 Introdution and summary 12 A new parametrization of the FP ation for SU(3) lattie gaugetheory 52.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 The FP ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3 The parametrization . . . . . . . . . . . . . . . . . . . . . . . . . 72.4 The quadrati approximation . . . . . . . . . . . . . . . . . . . . 92.5 The FP ation on rough on�gurations . . . . . . . . . . . . . . . 92.6 Summary and onlusion . . . . . . . . . . . . . . . . . . . . . . 133 The deon�ning phase transition in pure Yang-Mills theory 153.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.2 Finite temperature in lattie gauge theory . . . . . . . . . . . . . 163.3 The phase struture of lattie gauge theory . . . . . . . . . . . . 213.3.1 Polyakov loop orrelator as the order parameter of thephase transition . . . . . . . . . . . . . . . . . . . . . . . 213.3.2 Center symmetry . . . . . . . . . . . . . . . . . . . . . . . 233.4 Determination of the temporal sale . . . . . . . . . . . . . . . . 243.5 Determination of the ritial ouplings . . . . . . . . . . . . . . . 283.5.1 Simulation details . . . . . . . . . . . . . . . . . . . . . . 293.5.2 Analysis details . . . . . . . . . . . . . . . . . . . . . . . . 313.5.3 Error estimation . . . . . . . . . . . . . . . . . . . . . . . 373.6 Conlusions and outlook . . . . . . . . . . . . . . . . . . . . . . . 404 Saling properties of the FP ation 424.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.2 Saling of the stati quark-antiquark potential . . . . . . . . . . . 434.2.1 The stati potential . . . . . . . . . . . . . . . . . . . . . 444.2.2 Determination of the spatial sale . . . . . . . . . . . . . 454.2.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . 464.2.4 Analysis details and results . . . . . . . . . . . . . . . . . 484.3 Saling of the ritial temperature and r0p� . . . . . . . . . . . 524.3.1 T=p� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.3.2 r0T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.3.3 r0p� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.4 Conlusions and outlook . . . . . . . . . . . . . . . . . . . . . . . 59i



ii Contents5 Glueballs 615.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615.2 Glueball operators from Wilson loops . . . . . . . . . . . . . . . . 625.2.1 Glueball states . . . . . . . . . . . . . . . . . . . . . . . . 635.2.2 Constrution of basis funtions of irreduible representations 645.2.3 Irreduible representations of the ubi group on Wilsonloops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . 695.4 Analysis details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.4.2 Signal/noise ratio of the operators . . . . . . . . . . . . . 755.5 Conlusions and outlook . . . . . . . . . . . . . . . . . . . . . . . 766 Conlusions and outlook 77A The O(a2) and O(a4) Symanzik onditions 79A.1 The O(a2) Symanzik onditions . . . . . . . . . . . . . . . . . . . 79A.2 Conditions from onstant abelian gauge �elds . . . . . . . . . . . 80B Instanton lassial solutions on the lattie 83B.1 Constrution of SU(2) single instanton on�gurations . . . . . . . 84B.2 Results and omments on SU(2) single instanton on�gurations . 85C The Ferrenberg-Swendsen reweighting 90C.1 The single-histogram reweighting . . . . . . . . . . . . . . . . . . 90C.2 The multi-histogram reweighting . . . . . . . . . . . . . . . . . . 92C.3 Reweighting at �rst order phase transitions . . . . . . . . . . . . 96D Extrating masses from orrelation funtions 100D.1 Variational tehniques . . . . . . . . . . . . . . . . . . . . . . . . 101D.2 Correlated �ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102E The ubi point group Oh 104E.1 The group elements of Oh . . . . . . . . . . . . . . . . . . . . . . 104E.2 The harater table . . . . . . . . . . . . . . . . . . . . . . . . . . 106E.3 Wave funtions of glueball operators . . . . . . . . . . . . . . . . 106F Colletion of data 115F.1 Data from the stati potential . . . . . . . . . . . . . . . . . . . . 115F.2 Data from the glueball simulations . . . . . . . . . . . . . . . . . 117



Chapter 1Introdution and summaryQuantum hromodynamis (QCD) has been the generally aepted theory ofstrong interations over the last 20 years. However, basi features of non-perturbative low-energy QCD physis, suh as the spetrum or the strutureof hadrons, have proven to be notoriously diÆult to alulate.One way of doing non-perturbative alulations is by using a disrete spae-time lattie as an ultraviolet regulator [1℄. The QCD ation is disretized byreplaing spae-time integrals with sums and derivatives with �nite di�erenes.Then the path integral de�ning the �eld theory an be evaluated numeriallyusing for example Monte Carlo tehniques. The main problem for suh numer-ial lattie alulations, however, is the ontrol of lattie artifats whih areintrodued through the �nite lattie spaing a.The standard disretization of the QCD ation is the Wilson gauge ation inthe pure gauge setor and the Wilson Dira ation in the fermioni setor. Thesedisretized ations introdue errors of O(a2) and O(a), respetively, whih arelarge when the lattie spaing is larger than a ' 0:1 fm. On the other hand,typial maximal lattie sizes whih an be simulated in quenhed QCD withhigh statistis on omputers in the 10 GFLOPS range are around 323� 64. Forfull QCD this marks the maximal lattie size for obtaining reliable results evenwith the most powerful TFLOPS-lass omputers like CP-PACS and QCDSPurrently available to the lattie ommunity. Reeting the fat that the neededphysial lattie sizes are around L ' 2:0 � 3:0 fm in order to avoid �nite vol-ume e�ets, the smallest lattie spaing aessible with reasonable e�ort is ofthe order of a ' 0:1� 0:2 fm. These observations suggest the use of improveddisretizations of lattie ations, for whih �nite lattie spaing errors are re-moved or at least dramatially redued. This an be ahieved by systematiallyintroduing new irrelevant interations into the lattie ations. Among theapproahes proposed, there are methods using perturbatively alulated orre-tion terms in order to improve the lattie gauge ation beyond O(a2), like theSymanzik program or the mean�eld and tadpole improvement approah.An entirely di�erent approah is suggested by Hasenfratz and Niedermayer[2℄, namely to use perfet lattie ations, whih are ompletely free of lattie arti-fats. Aording to Wilson's renormalization group (RG) theory suh quantum1



2 Chapter 1. Introdution and summaryperfet ations follow the renormalized trajetory under repeated RG transfor-mation steps and desribe the long-distane physis of the theory properly atany �nite lattie spaing. The RG trajetory runs into the �xed point (FP)of the RG transformation in the ontinuum and forms the FP ation. The FPation at �nite oupling values is lassially perfet, that is, it reprodues allthe physial properties of the lassial ation in the ontinuum at �nite lat-tie spaing, and is thought to be a very good approximation to the quantumperfet ation. As was pointed out in [2℄, the determination of the lassiallyperfet FP ation in the ontinuum limit redues to a saddle-point problem forasymptotially free theories. This approah was suessfully applied to the two-dimensional non-linear �-model [2, 3℄ and the two-dimensional CP3 model [4℄.For the SU(3) gauge theory the lassially perfet FP ation was onstrutedand tested in [5, 6, 7, 8℄ and the ansatz was extended to inlude FP ations forfermions as well [9, 10℄. In the ase of SU(2) gauge theory the FP ation wasonstruted in [11, 12, 13℄, and its lassial properties were tested on lassialinstanton solutions, both in SU(2) and SU(3) [14℄. In this ontext, the questionarises whether one an �nd a simple but exible parametrization whih is stilleasy to simulate. The need for a new parametrization whih an desribe theFP ation arbitrarily preise beomes even more urgent regarding the reentdevelopments in the fermioni setor, where the FP Dira operator was shownto ful�ll the Ginsparg-Wilson relation assuring nie properties related to hiralsymmetry on the lattie [15, 16℄. In view of the omputational ost related to theFP Dira operator (inversion, determinant), the expense for a well parametrizedFP gauge ation beomes almost negligible and an additional e�ort in �ndingan improved parametrization of the FP gauge ation is justi�ed. It is mainly onthe bakground of these onsiderations that the present work has to be seen.The new parametrization on whih we report in this work has a muh riherstruture and is muh more exible than the ones previously studied. However,using a more omplex parametrization naturally inorporates the danger of over-shooting and doing things wrong. Therefore the main part of the work is devotedto study the properties of the parametrized FP ation in order to assure thatno instabilities are introdued through the more omplex parametrization. Inaddition, one would like to have unquestionable on�dene in the parametrizedFP ation for the whole range of oarse lattie spaings at whih the ation willbe used in future appliations.Additionally, one would like to produe interesting physial results using avery di�erent formulation of lattie gauge theory in order to on�rm universal-ity. Universality is the generally aepted assumption that in the ontinuumlimit, where the lattie spaing goes to zero, the physially meaningful quanti-ties do not depend on the atual disretization, but ontain only a few relevantparameters.The work presented here has been mostly aomplished in ollaboration withPhilipp R�ufenaht and Feren Niedermayer. In the following we give an outlineof the work and summarize the main results.In hapter 2 we present the onstrution and parametrization of a FP gaugeation on the lattie starting from the analytially alulated ouplings of theFP ation in the quadrati approximation, where are was taken not to vio-



3late the O(a2) Symanzik onditions. Emphasis is laid on how the FP ation isparametrized at lattie spaings suitable for performing simulations on oarselatties and it is pointed out that the parametrization respets approximatesale invariane of instanton solutions. We briey omment on the omputa-tional ost of the parametrized FP ation and, in this ontext, on its usefulnessand importane in possible pratial appliations. Some tehnial details onhow O(a2) and O(a4) Symanzik onditions an be alulated analytially arerelegated to appendix A, while appendix B ontains details on how to put sin-gle instanton solutions on a periodi lattie and on the proess of the fallingthrough the lattie of suh lassial instanton solutions.Chapter 3 deals with the �nite temperature deon�ning phase transition inpure gauge theory and the determination of the ritial temperature T. Somee�ort is spent on how �nite temperature is introdued in lattie gauge theory ina lean way and how Polyakov loop orrelators �gure as an order parameter forthe phase transition. For the purpose of subjeting the parametrized FP ationto saling tests we determine its ritial ouplings � on latties with temporalextensions N� = 2; 3 and 4. For eah N� we perform simulations on severallatties for a �nite size saling study. Emphasis is put on the error alulationand estimation of the ritial ouplings. Tehnial details on the Ferrenberg-Swendsen reweighting used for the determination of the ritial ouplings arepostponed to appendix C, where the mahinery is set up and tested on thetwo-dimensional Ising and 10-state Potts model.In hapter 4 the parametrized FP ation is subjet to several saling tests.Using spatially smeared Wilson loops we measure the stati quark-antiquarkpotential at various values of the gauge oupling and examine its saling behav-ior. From the potentials we extrat the ommonly used referene sale r0 andan e�etive string tension � in order to hek the saling behavior of the renor-malization group invariant quantities r0T; T=p� and r0p�. Despite the fatthat the determination of the referene sale r0 is hampered by systemati am-biguities even at modest lattie spaings around a ' 0:1 fm, when di�erent butequivalent methods are applied, we observe exellent saling of the parametrizedFP ation on the one perent level down to oarse lattie spaings of arounda ' 0:33 fm. Details on variational tehniques and orrelated �ts, whih areemployed for extrating potential energies from orrelation funtions of Wilsonloops, an be found in appendix D.In the following the parametrized FP ation is extensively tested on the glue-ball spetrum in hapter 5. We desribe the onstrution of glueball operatorsfrom Wilson loops up to length eight and we review, in the ontext of glueballs,some aspets of representation theory in general and of the ubi group in par-tiular. We perform several large simulations and measure the glueball spetrumin all 20 symmetry hannels. However, due to the oarse lattie spaings, we areable to resolve only a few lowest lying glueball masses. The lowest lying 0++hannel shows partiularly large ut-o� e�ets, when measured with the Wil-son gauge ation, and therefore provides an exellent andidate for testing theimprovements ahieved with the parametrized FP ation. Indeed, we observemuh redued lattie artifats as ompared to the Wilson gauge ation even atmoderate lattie spaings between a ' 0:10� 0:18 fm and the parametrized FP



4 Chapter 1. Introdution and summaryation shows a perfet saling behavior. Performing the ontinuum limit for thishannel we obtain an estimate of 1627(83) MeV for the 0++ glueball mass and2354(95) MeV for the 2++ glueball mass1.The last hapter �nally ontains some general onlusions and prospets forthe future.

1Only the 0++ value represents a ontinuum extrapolation, while the 2++ value orre-sponds to the one measured at a lattie spaing of a = 0:10 fm.



Chapter 2A new parametrization ofthe FP ation for SU(3)lattie gauge theory2.1 IntrodutionWhile the FP ation an be alulated numerially to arbitrary preision inpriniple, one has to resort to an approximate parametrization of the FP ationin pratie due to limited omputer power. It turns out, that �nding an appro-priate parametrization is not an easy task.In this hapter we present a new ansatz for the parametrization whih isvery general and exible, and whih allows to parametrize the FP ation usingmore and more ouplings without any further ompliations. Nevertheless, itis still easy to handle in ontrast to earlier attempts. The approah we use isbuilding simple loops (plaquettes) from single gauge links as well as smearedlinks. In this manner we are able to reprodue the lassial properties of theFP ation exellently.The new ansatz is motivated by the suess of using fat links in simulationswith fermioni Dira operators [17, 18, 19℄. Fat links are gauge links, whih areloally smeared over the lattie. In this way the unphysial short-range u-tuations inherent in the gauge �eld on�gurations are averaged out and lattieartifats are redued dramatially [20℄. It is mainly in view of possible futureappliations of the FP gauge ation in onnetion with FP Dira operators thata new and more aurate parametrization of the FP ation is undertaken.Earlier parametrizations of FP ations were based on powers of the traesof loop produts along generi losed paths [6℄. Restriting the set of paths forprodution runs to loops of length 8 or less and �tting in a 24 hyperube, one isstill left with 28 topologially di�erent loops, some of them having a multipliityas large as 384. In addition, it turned out that the quality of the parametriza-tion of the FP ation did not improve upon enlarging the set beyond the 125



6 Chapter 2. A new parametrization of the FP gauge ationmost important loop paths. Presumably this is an indiation of the fat thatloop paths beyond length 8 are important for an aurate parametrization of theFP ation. However, when extending this earlier ansatz beyond Wilson loopsof length 8, it beomes nearly impossible to keep trak of all topologies andmultipliities, and the omputational overhead is una�ordable. That suh anextension is needed is evident also from studies of topology with the FP gaugeation [14, 13℄, where it beame lear that at least one operator of length eighthas to be inluded. Suh an extension, however, already introdues a omputa-tional overhead fator of 35-225 ompared to the Wilson ation.The new parametrization presented here provides a way around these prob-lems. Although the omputational overhead is still onsiderable, the ansatz isexible enough to easily respet sale invariane of instanton solutions and istherefore expeted to desribe the lassial and topologial properties of thepure gauge theory properly. Equally important is the apability of the newparametrization to be extendable without further ompliations and with onlya slight additional e�ort in order to desribe the FP ation more and more a-urate.The rest of this hapter is organized as follows. In the �rst setion we willvery briey review the essential ingredients forming the FP ation approahwithout giving arguments on its working mehanism. In setion 2.3 we willpresent the general ansatz for the parametrization and then alulate the ou-plings of the FP ation in quadrati approximation while taking are of theO(a2) Symanzik onditions in setion 2.4. In setion 2.5 we will explain in detailthe onstrution of a parametrized FP ation suitable for simulations on oarselatties in physially interesting regions. We will hek that the parametrizationrespets approximate sale invariane of instanton solutions. It is pointed outthat the ation is espeially suited for the use in Monte Carlo simulations, sinewe are not only parametrizing the FP ation values but also the derivativeswith respet to the gauge �elds as well. Finally, we add some remarks aboutthe omputational overhead of the parametrized FP ation in the last setionand give an estimation of its usefulness in possible appliations.2.2 The FP ationWe onsider SU(N) pure gauge theory1 in four dimensional Eulidean spaede�ned on a periodi lattie. The partition funtion is de�ned throughZ(�) = Z dUe��A(U); (2.1)where dU is the invariant group measure and �A(U) is some lattie regular-ization of the ontinuum ation. We an perform a real spae renormalizationgroup transformation (RGT),e��0A0(V ) = Z dU exp��(A(U) + T (U; V )); (2.2)1The following equations are given for general N , although the numerial analysis andsimulations are done for SU(3).



2.3. The parametrization 7where V is the bloked link variable and T (U; V ) is the bloking kernel de�ningthe transformation,T (U; V ) = � �N XnB ;� �ReTr(V�(nB)Qy�(nB))�N �� � : (2.3)Here, Q�(nB) is a N � N matrix representing some mean of produts of linkvariables U�(n), onneting the sites 2nB and 2(nB + �̂) on the �ne lattie andN �� is a normalization onstant ensuring the invariane of the partition funtion.By optimizing the averaging funtion in Q� and the parameter �, it is possible toobtain an ation on the oarse lattie, whih has a short interation range. Suhan optimization has been done and we refer to [8℄ for the expliit form of theRGT blok transformation. The main idea of the RGT III blok transformationis that, instead of using just simple staples, one additionally builds 'diagonalstaples' along the planar and spatial diagonal diretions orthogonal to the linkdiretion. In this way one ahieves that eah link on the �ne lattie ontributesto the averaging funtion.On the ritial surfae at � ! 1 equation (2.2) beomes a saddle pointproblem representing an impliit equation for the FP ation, AFP,AFP(V ) = minfUg �AFP(U) + T (U; V )	 : (2.4)The normalization onstant in the bloking kernel, N �� , beomes in the limit� !1 N1� = maxW�SU(N)�ReTr(WQ�y)	 : (2.5)The FP equation (2.4) an be studied analytially up to quadrati orderin the vetor potentials [8℄. However, for solving the FP equation on oarseon�gurations with large utuations one has to resort to numerial methods,and a suÆiently rih parametrization for the desription of the solution isrequired.2.3 The parametrizationThe approah we use for the parametrization is building simple loops (plaque-ttes) from single gauge links as well as from smeared links. The smeared linksare built out of staples of gauge links and depend on the plane of the plaquetteto whih they are ontributing.Let us introdue the notation S(�)� (n) for the sum of two staples of gaugelinks in diretion � in the ��-plane2:S(�)� (n) = U�(n)U�(n+ �̂)U y� (n+ �̂)+ U y� (n� �̂)U�(n� �̂)U�(n� �̂ + �̂) : (2.6)2Following the notation introdued in [21℄ this is equivalent to S(�+)� , where the subsriptdenotes the diretion of the staple and the supersript spei�es the plane �� and the parityin �.



8 Chapter 2. A new parametrization of the FP gauge ationWe shall use besides the usual symmetri smearing also a non-symmetrismearing. For the symmetri smearing de�neQs�(n) = 16 X�6=�S(�)� (n)� U�(n) (2.7)and x�(n) = ReTr �Qs�(n)U y�(n)� : (2.8)To build a plaquette in the ��-plane from smeared links it is onvenient tointrodue asymmetrially smeared links. First de�ne3Q(�)� = 14 0� X�6=�;� S(�)� + �(x�)S(�)� 1A��1 + 12�(x�)�U� : (2.9)Using these matries we build the asymmetri smeared linksW (�)� = U� + 1(x�)Q(�)� + 2(x�)Q(�)� Uy�Q(�)� + : : : : (2.10)Here �(x), i(x) are polynomials with free oeÆients, to be determined laterby a �t to the FP ation,�(x�) = �(0) + �(1)x� + �(2)x2� + : : : (2.11)and i(x�) = (0)i + (1)i x� + (2)i x2� + : : : : (2.12)These asymmetrially smeared links are no longer elements of the SU(3)gauge group, but they an be projeted bak to the nearest element in theSU(3) gauge group. However, the projetion is expensive for the use in atualsimulations and in addition our numerial studies have shown that this is notreally neessary but redues the degrees of freedom in de�ning the ation, suhthat for larger utuations the FP ation annot be �tted aurately enough.We will thus use the smeared links W (�)� as they are.From these asymmetrially smeared links we onstrut a 'smeared plaquette'variable w�� = ReTr �1�W pl��� ; (2.13)and the ordinary Wilson plaquette variableu�� = ReTr �1� Upl��� ; (2.14)where W pl��(n) =W (�)� (n)W (�)� (n+ �̂)W (�)y� (n+ �̂)W (�)y� (n); (2.15)and Upl��(n) = U�(n)U�(n+ �̂)U y�(n+ �̂)U y� (n): (2.16)3The argument n is suppressed in the following.



2.4. The quadrati approximation 9Finally, the parametrized ation has the formA[U ℄ = 1N X�<� f(u�� ; w��) ; (2.17)where we hoose a polynomial in both plaquette variables,f(u;w) = Xkl pklukwl= p10u+ p01w + p20u2 + p11uw + p02w2 + : : : : (2.18)Again, the oeÆients pkl are free parameters and will be determined later, sothat the FP ation is approximated losely.2.4 The quadrati approximationThe ouplings of the FP ation an be alulated analytially in the quadratiapproximation [6, 8℄. By �tting the leading order nonlinear parameters �(0),(0)1 ; (0)2 and p10; p01 to the quadrati part of the FP ation we an hek theexibility and the quality of the parametrization. Of ourse every (approximate)parametrization introdues O(a2) artifats and violates the nie properties ofthe FP ation, however, one an exploit the freedom in the parametrizationto orret for this and to expliitly ful�ll the Symanzik ('on-shell') onditions4up to O(a2) or even O(a4). In this way the linear parameters p10 and p01are determined as funtions of the rest by the norm and the O(a2) Symanzikondition. The �t in the three nonlinear parameters yields the following result:�(0) = 0:082 ; (0)1 = 0:282 ; (0)2 = 0:054 ; (2.19)with the orresponding plaquette oeÆientsp10 = �0:3681 ; p01 = 0:6292 : (2.20)It is interesting to note that for the present ansatz of the parametrization theseond O(a2) Symanzik ondition is automatially ful�lled. The ation, whereonly the leading parameters are present, is denoted by A0(U) and is a goodapproximation to the FP ation for suÆiently small �elds.Cheks involving simple on�gurations with only one or two non-trivial linkssuÆiently lose to unity, show that A0(U) approximates indeed well the FPation to quadrati order, in fat the relative error between A0(U) and the trueFP ation value is found to be less than 2%.For simulations with the FP ation in physially interesting regions it isimportant to have a parametrization for gauge �elds on oarse latties. Weturn to this problem in the next setion.2.5 The FP ation on rough on�gurationsThe parametrization of the FP ation on strongly utuating �elds is a diÆ-ult and deliate problem. In this setion we desribe briey the proedure of4For details on the O(a2) and O(a4) Symanzik onditions see appendix A.



10 Chapter 2. A new parametrization of the FP gauge ationobtaining a parametrization, whih uses only a ompat set of parameters, butwhih desribes the FP ation still suÆiently well for the use in atual simula-tions. We also provide some details about the �tting proedure used.Obtaining the FP ation values on rough on�gurations involves a multi-gridproedure. One starts with on�gurations fV g on a oarse lattie and appliesinverse bloking steps to obtain �ner on�gurations fU (n)g; n = 1; 2; : : ::fV g ! fU (1)g ! fU (2)g ! : : :! fU (k)g : (2.21)In eah step the utuations of the �elds are typially redued by a fator of30 to 40 and after a suÆiently large number of steps k the �ne on�gurationfU (k)g is so smooth that any disretization of the gauge ation an be used onit. In pratise, however, memory and time prevents from doing more than onestep at one and one has to resort to building the FP ation iteratively.Starting on the �nest level with on�gurations for whih the quadrati ap-proximation A0 is appropriate, one ends up with physially interesting on�g-urations and a suitable parametrization of the FP ation after three or foursteps. On eah intermediate level one has to �nd a new parametrization whihdesribes the FP ation aurately enough and it shows that one has to inludemore and more parameters on eah level to do so. However, sine these interme-diate FP ations are not intended to be used in simulations, one an be generouswith respet to the numbers of parameters inluded. This is no longer the asefor the last step, where we restrited ourselves to the smallest possible set ofparameters, whih still meets our requirements for the auray of the ation.During this iterative proedure it turned out to be favorable to release fromthe O(a2) Symanzik ondition and, indeed, it is not lear how important it is inthe presene of large utuations. In this sense the �nal ation is only intendedto work in a given range of utuations, whih, however, overs the physiallyinteresting utuations aessible with todays omputer power.The determination of the oeÆients of the intermediate and the �nal parametriza-tion is done by minimizing a �2-funtion involving the derivatives of the gaugeation with respet to the gauge links in a given olour diretion a (N denotingthe number of olours),ÆA(U)ÆUa�(n) ; � = 1; : : : ; 4 and a = 1; : : : ; N2 � 1; (2.22)the ation values of the FP ation on equilibrated on�gurations and, maybesomewhat less important, on lassial solutions of the FP ation. The values tobe �tted are alulated using the information we have about the �ne on�gu-ration. Fitting the derivatives has the advantage that one single on�gurationprovides V � (N2 �1) �4 residues, where V is the volume of the lattie, instead ofjust one for the ation value. As the inverse bloking involves minimization ofthe �ne on�guration, whih is quite expensive, the approah redues omput-ing time onsiderably. In addition what ounts in MC simulations are really theloal hanges of the ation and not the total ation value itself, thus the presentFP ation is espeially suited for the use in MC simulations. However, one hasto keep in mind that not all of the residues are independent from eah other andwe arefully heked that enough independent information is inluded in the �t.An interesting and important test for the exibility of the parametrization is



2.5. The FP ation on rough on�gurations 11whether both the requirements for �tting the derivatives and the ation valuesan be met at the same time and it shows that this is indeed the ase.For addressing questions onerning topology it turned out to be ruial toinlude sale-invariant instanton solutions [11, 12, 13, 14℄. A good parametriza-tion of the FP ation should also be able to respet approximate sale invarianeof instanton solutions. For this purpose we generated sets of SU(2) single in-stanton on�gurations on a 124 lattie with instanton radius �=a ranging from3.0 down to 1.1 entered in a hyperube, in a ube and in a plaquette5. Wethen bloked the on�gurations down to a 64 lattie to get approximate lassialsolutions. In fat it turns out that they are lassial solutions of the FP ationfor radii larger than �=a � 0:88 as an be seen for example from �gure 2.1.
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Figure 2.1: SU(2) single instanton solutions on a 64 lattie with enter of theinstanton at x=a = (2 34 ; 2 34 ; 2 34 ; 2 34 ), a being the lattie spaing on the oarselattie. V is the oarse on�guration and U denotes the minimized on�gurationon the �ne lattie. Note, that AFP(V ) = AFP(U) + T (U; V ) and that for anexat lassial solution of the FP ation one has T (U; V ) = 0.In �gure 2.2 we show how the present parametrization works on the exampleof instanton solutions entered in a ube. The solid lines are extrapolationsfrom �nite latties with L = 4; 6; 8 to an in�nite lattie. The ation values areexpressed in units of the one instanton ation value in the ontinuum, Ainst =4�2.In the last step we �rst �tted the derivatives on � 50 thermal on�gura-tions orresponding to a Wilson ritial oupling at N� = 3; �W � 5:4. Inthe following the non-linear parameters were kept �xed, while we inluded inaddition the ation values and the derivatives of � 75 thermal on�gurations at�FP = 2:8; 4:0; 7:0 and the ation values of the instanton on�gurations. Sine5For a detailed presription of how the instanton on�gurations are generated we referto appendix B, where we also add some remarks about the minimization of suh solutions,i.e. the mehanism of the falling through the lattie.
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Figure 2.2: SU(2) single instanton solutions entered inside a spatial ube. Thesolid lines are extrapolations to in�nite lattie. For the parametrized FP ationwe also plot the values of the ation on latties with size L = 4; 6; 8 as dashedlines.the non-linear parameters are kept �xed we use this information only to optimizein this way the linear parameters.To assure stability of the �t we employed di�erent heks: �rst we hekedthat the �2 was stable on independent on�gurations, whih were not inludedin the �t. Seondly, we suessively exluded di�erent parts of the �tted datato hek the stability of the data sets and, thirdly, we heked stability undervariation of the relative weights with whih the di�erent data sets were inludedin the �t. Using high order polynomials of the plaquette variables u and w thereis always the danger of generating non-positive regions in the uw-plane. Wefound that this an usually be irumvented by hoosing an appropriate set oflinear parameters pkl.The smallest aeptable set of parameters we found onsists of four non-linear parameters, �(0); (0)1 ; (0)2 ; (0)3 and fourteen linear parameters pkl with0 < k + l � 4. The values of these parameters are given in table 2.1 and ful�llthe orret normalization. They form the �nal approximation of the FP ation.It is lear that by restriting ourselves to a small set of parameters we an notdesribe all the properties of the FP ation aurately enough, but in ontrast,through the trunation in the parameter spae we introdue lattie artifats ofany order. Therefore the approximate FP ation will be subjeted to a numberof saling tests in order to ensure the suessful and orret parametrization ofthe FP ation and in order to size possible lattie artifats. In the following,when we speak of the FP ation in the ontext of pratial appliations, wereally mean the parametrized and therefore approximate FP ation desribedin this hapter.



2.6. Summary and onlusion 13�(0) (0)1 (0)2 (0)3-0.038445 0.290643 -0.201505 0.084679p0i 0.442827 0.628828 -0.677790 0.176159p1i 0.051944 -0.918625 1.064711 -0.275300p2i 0.864881 -0.614357 0.165320p3i -0.094366 -0.020693p4i 0.022283Table 2.1: Parameters of the approximate FP ation.2.6 Summary and onlusionBefore we an appreiate the value and usefulness of the new parametrization,some omments are in order onerning the omputational overhead.We have alulated the expense of the parametrized FP ation and om-pared it to the expense of an optimized Wilson gauge ode. The omputationaloverhead amounts to a fator of 55-60 and omes mainly from omputing thesmeared links. One these links are alulated one an generate (ompat)loops up to arbitrary length just by inluding more and more powers of thesmeared links. The present parametrization therefore allows to reah an almostarbitrarily rih parametrization of the FP ation with no further ompliationswhatsoever. In ontrast, this was not the ase for the older parametrizations,whih were using powers of simple Wilson loops up to a given length, sine goingbeyond loops of length eight turned out to be impossible in pratie. Reetingthese fats the omputational overhead is ertainly justi�ed.Of ourse, the overhead is a severe drawbak for the use of the ation inatual simulations as will be lear in the next hapters. Although the ationshows muh redued lattie artifats as ompared to the Wilson ation, it is notlear if the extra work pays o� in pure gauge theory at zero temperature. Indeed,a fair ompetition for di�erent ations is to ompare results whih are obtainedwith the same omputational e�ort. Allowing therefore the same amount ofsimulation time to the Wilson ation one ould simulate on latties whih arearound 2.7 times �ner than the ones aessible to the FP ation at the moment.This orresponds to a lattie spaing of around a ' 0:04 fm or a Wilson oupling�W ' 6:6, whih is already far in the ontinuum. Of ourse, it is not lear howthese onsiderations are modi�ed when the ontinuum is approahed: due toritial slowing down, missing overlap of simple loop operators with physialobjets, like in the ase of glueball operators, the simulation ost is likely to growas a�6, when the lattie spaing is redued, and the above fator of 2.7 is byfar exaggerating. In partiular, it is known that for thermodynami quantitiesthe omputational e�ort grows proportional to a�10 suggesting a fator in thelattie spaing of � 1:5 instead. Thus, thermodynamis of SU(3) lattie gaugetheory is surely a �eld of pratial appliations for the FP ation.Another remark in favour of the FP ation onerns the use of it in onne-tion with a fermioni FP Dira operator, i.e. the appliation of the FP gaugeation in full QCD. In view of the expense for a Dira operator in dynamial sim-ulations the overhead oming from the FP gauge ation is only a slight drawbakand an easily be a�orded. In addition, one knows that FP gauge ations prefer



14 Chapter 2. A new parametrization of the FP gauge ationgauge �elds with smaller utuations ompared to the Wilson gauge ation atthe same lattie spaing. Thus inversions of Dira operators will onverge fasteron gauge on�gurations generated with the FP ation thereby ompensating theoverhead oming from it.Reapitulating it is fair to say, that the parametrized FP gauge ation inombination with the FP Dira operator in QCD simulations opens the inter-esting possibility to keep hiral symmetry and redue the ut-o� e�ets at thesame time. In these appliations the overhead omes almost entirely from theDira operator, while the overhead from the gauge ation is negligible. For ap-pliations in pure gauge theory, however, the use of the parametrized FP gaugeation has to be hosen thoughtfully.



Chapter 3The deon�ning phasetransition in pureYang-Mills theory3.1 IntrodutionOne of the possible senarios for the genesis of the universe suggests a Big-Bang,whih reated a seething soup of quarks and gluons, the quark-gluon plasma,just miroseonds thereafter. As the universe expanded and energy density andtemperature dereased, the soup ooled down and on�ned into nuleons, whihin turn formed the nulei only a few minutes later. To hek whether this istrue or not, one an try to free the quarks and gluons from their hadron habitatand in this way to rereate the early stage of the universe.There are several strong indiations that this quark-gluon plasma has beenseen just reently in heavy ion beam experiments at CERN. By olliding, forexample, nuleon lead beams on a solid lead target, one generates 'Little Bangs',small pokets of hot and dense nulear matter, presumably forming to primordialquark-gluon plasma. One of the observed signature for the quark-gluon plasmais the sudden drop in the prodution of J= partiles. This is due to the fatthat the harge of the onstituting harm-quarks are Debye-sreened by the sur-rounding gluons and quarks and the binding into the J= is strongly suppressed.Another sign, suggesting that the quark-gluon plasma has been observed, is theexess of light weakly interating partiles like eletron-positron pairs. Yet an-other indiation is the inreased prodution of strange partiles. Theoretialonsiderations predit the deon�ning transition temperature of QCD, wherethe quarks ease to stik together in hadrons, to be around 180 MeV, roughlywhat has been observed by the CERN experiments.In pure Yang-Mills theory the gluon plasma is expeted to form at tempera-tures above 270 MeV. This small number is rather surprising in view of the fatthat the lowest gluoni exitations are high (around 1.6 GeV), however, it isfor example predited by non-perturbative alulations on the lattie. We antherefore use the ritial temperature T of the deon�ning phase transition to15



16 Chapter 3. The deon�ning phase transition in pure Yang-Mills theorydetermine the physial sale of the lattie omputations performed in this work,and, in addition to its intrinsi importane as a fundamental non-perturbativepredition, it also provides an exellent quantity to test the auray of theimprovement sheme and to study lattie artifats.The hapter is organized as follows. We will �rst spend some e�ort on how�nite temperature is introdued in lattie gauge theory in a formal and leanway1. We show that the Polyakov loop orrelator �gures as an order parameterfor the phase transition and disuss the phase struture of the theory. Thenwe will explain the determination of the ritial ouplings of the parametrizedFP ation inluding details about the simulations, the analysis and the errorestimation. For eah N� we perform simulations on several latties for a �nitesize saling study. The ritial temperatures determined here will be subjetto saling tests in hapter 4. Tehnial details on the Ferrenberg-Swendsenreweighting, whih is used in the ourse of alulating the ritial ouplings,are relegated to appendix C, where the method is illustrated by means of thetwo-dimensional Ising and 10-state Potts model.3.2 Finite temperature in lattie gauge theoryThe Eulidean lattie ation for SU(N) Yang-Mills theories is given byS = ��Xpl ReTr (Upl) ; (3.1)where Upl is the plaquette produt of the gauge links:Upl = U�(x)U�(x+ �̂)U y�(x+ �̂)U y� (x); (3.2)and the sum in eq. (3.1) is over all plaquettes on the lattie.The ation (3.1) is invariant under loal gauge transformationsU�(x)! g(x)U�(x)g�1(x+ �̂): (3.3)To disuss the physial meaning of the gauge invariane it is onvenient toonsider a partial gauge �xing whereU4(x) = 1: (3.4)The remaining degrees of freedom are then the links in spatial diretions Uk(~x; t),k = 1; 2; 3. Time independent gauge transformations g(~x) are still allowed bythe ondition (3.4). In this gauge one an de�ne the transfer matrixT (U 0; U) = exp8<:�X~x;k ReTr�U 0k(~x)U yk(~x)�+ 12�Xpl Upl + 12�Xpl U 0pl9=; :(3.5)1This setion is based on notes whih originated in several disussions on �nite tempera-ture gauge theory at the Institute for Theoretial Physis in Bern. I am grateful to FerenNiedermayer for leaving me these notes.



3.2. Finite temperature in lattie gauge theory 17The symbols U , U 0 denote here the sets of links on two neighboring time slies,t and t + 1, respetively. The summation is over spatial plaquettes in the or-responding hyperplanes. The physial meaning of the transfer matrix is that itdesribes the evolution of the system in Eulidean time; it an be thought asexp(�aĤ) where Ĥ is the Hamiltonian of the system. To see the analogy with apath integral in quantum mehanis, note that the �rst term in the exponent isanalogous to the kineti term � 12� (x�y)2 while the others to � 12�(V (x)+V (y)).In our ase they represent the eletri and the magneti energies.The state of the system is given by a wave funtion depending on the gaugelinks U = fUk(~x)g and the evolution by one time step is	(U)! 	0(U 0) = Z dUT (U 0; U)	(U): (3.6)The transfer matrix is invariant under loal gauge transformations,T (U 0; U) = T (gU 0; gU) ; (3.7)where g = fg(~x)g and gUk(~x) = g(~x)Uk(~x)g�1(~x+ k̂): (3.8)De�ne the operator G(g) whih performs a gauge transformation as(G(g)	) (U) = 	�g�1U� : (3.9)The reason for having g�1 on the rhs. is that G(g) satis�es then the relationG(h)G(g) = G(hg): (3.10)Relation (3.7) means that the transfer matrix ommutes with the operatorsof the gauge transformations. One has a set of independent gauge transforma-tions, eah ating only at a given site ~x,G(g) =Y~x G(g(~x)); (3.11)and G(g(~x))T = T G(g(~x)) for any ~x: (3.12)As a onsequene, the Hilbert spae of states falls into di�erent subspaes. Thestates of a given subspae are haraterized by some irreduible representationof SU(N) (e.g. 1, 3, 3, 8, et. for SU(3)), one for eah site ~x. We shall saythat at a site where the wave funtion of a given subspae transforms non-trivially there is an external harge. Sine ating by the transfer matrix onsuh a state does not hange its transformation properties with respet to thegauge transformations, these harges are stati { the gauge dynamis does notinuene them (it does not even rotate them in olour spae).The simplest and most important subspae is that of the gauge invariantfuntions, 	(0) (gU) = 	(0) (U) ; (3.13)that is G(g(~x))	(0) = 	(0); for any ~x: (3.14)



18 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryThis is the setor with no external harges.De�ne the projetor P0 de�ned byP0 = Z dgG(g); (3.15)or equivalently (P0	) (U) = Z dg	�g�1U� = Z dg	(gU) ; (3.16)where dg = Q~x dg(~x). It projets an arbitrary funtion 	(U) onto the gaugeinvariant subspae.Consider now the partition funtion Z(0) of the system with no externalharges, at some �nite temperature. This is given by the trae of T N� taken inthe subspae of gauge invariant funtions. (Here N� is the number of time sliesto whih the inverse temperature is divided.) Instead of taking the trae in thissubspae one an alulate the trae of T N�P0 in the whole Hilbert spae:Z(0) = Tr(0) �T N� � = Tr �T N�P0� =XfUghU jT N�P0jUi; (3.17)where U = fUk(~x)g is an arbitrary gauge on�guration. The state jUi is de-sribed by a sharp wave funtion 	(U 0) = ÆU 0U , analogously to the states jxi inquantum mehanis. Using eq. (3.15) we haveZ(0) = XfUk(~x)g Z Y~x dg(~x)hU jT Nt jgUi: (3.18)In other words, the gauge on�guration on the time slie t = 0 oinides withthat on the time slie t = Nt only up to an arbitrary gauge transformationg = fg(~x)g. This is the onsequene of projeting onto the subspae withno external harges. Without the integration over g(~x) one would obtain anexpression whih is the sum of partition funtions for all possible hoies of theexternal harges. However, this would not be a useful quantity.Due to the fat that P0T = T P0 and P20 = P0, one an rewrite Z(0) byintroduing an extra (super�ial) P0 between any two time slies,Z(0) = Tr (T P0T P0 : : : T P0) = Z dU0 : : : dUNt�1dg0 : : : dgNt�1T (U0; g0U1)T (U1; g1U2) : : : T (UNt�1; gNt�1U0): (3.19)Here Ut for t = 0; : : : ; Nt�1 denote the set of spatial links fUk(~x; t); k = 1; 2; 3g.Observe that gt = fg(~x; t)g play the role of the temporal gauge links U4(~x; t)between the time slies t and t+ 1 sine ReTr�Uk(~x; t)U yk(~x; t+ 1)� goes intoReTr�Uk(~x; t) (gUk(~x; t+ 1))y� =ReTr�Uk(~x; t)g(~x+ k̂; t)U yk(~x; t+ 1)g�1(~x; t)� : (3.20)This is equivalent to the ontribution to the ation (3.1) from a plaquette in thek4 plane if we set g(~x; t) = U4(~x; t).



3.2. Finite temperature in lattie gauge theory 19Consequently, the partition funtion in the setor with no external harges isgiven by the original Wilson ation viaPU exp(�S(U)) (without any gauge �x-ing) and with periodi b.. on the gauge links in the time diretion, Uk(~x;Nt) =Uk(~x; 0). The projetion onto the gauge invariant subspae is ahieved by theintegration over the time omponents U4(~x; t).It is important to know how the system responds when external harges areintrodued at a given temperature. Introduing a stati Q �Q pair at some points~x and ~y means that we restrit the sum de�ning the partition funtion to thesubspae of funtions whih at every point ~z 6= ~x; ~y transform as a singlet, whileat points ~x and ~y as 3; 3. The partition funtion in this setor gives the freeenergy of the Q �Q pair at the relative distane ~r = ~x� ~y,ZQ �QZ(0) = e�FQ �Q(~r;T )=T : (3.21)The behaviour of the free energy FQ �Q(~r; T ) for large separations ~r distinguishesbetween on�nement and deon�nement at the given temperature T . For T <T, in the on�ning phase, for r ! 1 one has FQ �Q ! 1, while for T > T, inthe deon�ned phase, FQ �Q ! onst. For the pratial de�nition of this ratiowe need the projetion operator onto the fundamental representation at a givenpoint.Obviously, a gauge invariant produt of links along a losed loop in a giventime slie (e.g. Tr(Upl) of eq. (3.2) as the simplest ase) represents an admissiblewave funtion in the setor with no external harges. It an be shown that itrepresents a losed loop of (olour)eletri ux. An open string built by linksis expeted to desribe a state where at the two ends two external harges aresitting. To see this onsider a produt of gauge links starting from site ~x andending at ~y, 	ab(U) = �Uk(~x)Ul(~x+ k̂) : : :�ab : (3.22)The transformation property of this wave funtion is(G(h))	ab) (U) = 	ab �h�1U� = h�1aa0(~x)	a0b0(U)h(~y)b0b: (3.23)De�ne the operatorsPab(~x) = Z dg(~x)gab(~x)G(g(~x)): (3.24)Using the relation Z dggabg�1d = 1N ÆadÆb (3.25)and eq. (3.10) one obtainsPab(~x)Pd(~x) = 1N ÆbPad(~x): (3.26)The relation G(h(~x))Pab(~x) = h�1a (~x)Pb(~x) (3.27)shows that Pab(~x) ating on any funtion piks up the part whih transformsat point ~x aording to the fundamental representation, with index a (for anygiven b). Moreover, ating on the wave funtion in eq. (3.22) one hasPd(~x)	ab = 1N Æad	b; (3.28)



20 Chapter 3. The deon�ning phase transition in pure Yang-Mills theorythat is Pd(~x) piks up only those funtions whose index a at point ~x oinideswith its seond index d, and transforms it into a funtion with index , its �rstindex. Obviously, its trae (apart from the fator 1=N) is the desired projetorPQ(~x) = NP(~x): (3.29)It satis�es the relations PQ(~x)PQ(~x) = PQ(~x) (3.30)and PQ(~x)	ab = 	ab: (3.31)For ompleteness, de�ne an operator whih projets onto the appropriatesubspae at point ~y. For this letP�ab(~y) = Z dg(~y)g�1(~y)abG(g(~y)): (3.32)It satis�es similar relations, in partiularP�d(~y)	ab = 1N Æb	ad: (3.33)The orresponding projetor at point ~y is thenP �Q(~y) = NP�(~y): (3.34)The projetion to the desired subspae where the only external harges are atsites ~x and ~y is ahieved by multiplying the appropriate projetors for eah site,PQ �Q = PQ(~x)P �Q(~y) Y~z 6=~x;~yP0(~z): (3.35)The partition funtion in this subspae is then given byZQ �Q = 1N2Tr�T N�PQ �Q� = 1N2 XfUghU jT NtPQ �QjUi: (3.36)The 1=N2 fator (whih is anyhow an unimportant onstant fator) is intro-dued here beause the trae is in fat a sum over N � N di�erent possibleorientations of the external fundamental soure in the olour spae. We identifyagain the integration variables g(~z) in the projetors with the links U4(~z; t0)where t0 = Nt � 1 (or any �xed value). The partition funtion ZQ �Q is givenby integration over the �elds Uk(~z; t), U4(~z; t0), keeping U4(~z; t) = 1 for t 6= t0with the integrand tr(U4(~x; t0))tr(U y4 (~y; t0))exp(�S(U)). Introduing an arbi-trary time dependent gauge transformation on this on�guration one restoresall time like links U4(~z; t). By this proedure the original TrU4(~x; t0) term goesover to the Polyakov loop at ~x, that is, the ratio in eq. (3.21) is obtained by theorrelation funtion of Polyakov loops L(~x),ZQ �QZ(0) = hL(~x)L�(~y)i; (3.37)where



3.3. The phase struture of lattie gauge theory 21L(~x) = tr (U4(~x; 0)U4(~x; 1) : : : U4(~x;Nt � 1)) : (3.38)It is interesting to observe that using PQ �QPQ �Q = PQ �Q and T PQ �Q = PQ �QTone an introdue U4(~z; t) on all time slies in an alternative way. In this wayone obtains the produt of traes,Tr (U4(~x; 0))Tr (U4(~x; 1)) : : :Tr (U4(~x;Nt � 1)) : (3.39)It is easy to see that after integrating over all gauge equivalent on�gurationsthis reprodues the previous answer. Indeed, aording to eq. (3.25), on hasN Z dgTr �V g�1�Tr (gW ) = Tr (V W ) : (3.40)This form is, however, not onvenient for the use in simulations sine it is noisierthan the Polyakov loop, eq. (3.38).3.3 The phase struture of lattie gauge theoryIn this setion we will briey expose the main features of the deon�ning phasetransition in pure Yang-Mills theory at �nite temperature. Based on the pre-sentation in the previous setion, we will �rst dwell on the orrelation of thePolyakov loop as the order parameter of the transition, then reall the phasestruture of the theory and at the end disuss the onnetion with the sponta-neous breakdown of the enter symmetry of lattie gauge theory.3.3.1 Polyakov loop orrelator as the order parameter ofthe phase transitionThat pure Yang-Mills theory undergoes a phase transition at some temperatureT was expeted already some time ago [22, 23℄ and the �rst non-perturbativelattie determinations of the transition followed shortly after [24℄. As is alreadylear from the previous setion, the phase transition is aompanied by a radialhange in the behaviour of the orrelatorhL(~x)Ly(0)i; (3.41)where L(~x) is the Polyakov loop or Wilson lineL(~x) = Tr Pexpfig I �0 dtA4(~x; t)g; � = 1T ; (3.42)and the gluon �elds satisfy periodi boundary onditions. The simplest lattierealization of this objet may be written asL(~x) = TrN��1Yt=0 U4(~x; t): (3.43)Physially, L(~x) an be interpreted as the world line of a stati quark (or a olorsoure) representing the self-energy of an in�nitely heavy quark as explained



22 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryin the previous setion. One an onlude that the exess free energy of asingle stati quark relative to the absene of the quark is given by the thermalexpetation value of the Polyakov loop,e�(FQ(T )�F0(T )) = hL(~x)i = hLi: (3.44)In the last step we have used translational invariane of the vauum whih allowsone to onsider the spatially averaged operator only,L � 1N3� X~x TrN��1Yt=0 U4(~x; t): (3.45)Analogously the orrelator of a Polyakov loop and its adjoint one having oppo-site orientation, ontains information about the free energy of a stati quark-antiquark pair, hL(~x)Ly(0)i = expf�(FQ �Q(~x; T )� F0(T ))g: (3.46)Assuming luster deomposition at large distanes one hashL(~x)Ly(0)i j~xj!1�! jhLij2: (3.47)In the pure gauge theory a single olour-triplet harge an not be sreened bydynamial sea quarks in the on�ned phase and its free energy FQ beomesin�nite ausing a vanishing expetation value of L(~x). At large distanes theorrelation funtion deays exponentially,hL(~x)Ly(0)i � expf��(T )j~xj=Tg; (3.48)hene the free energy inreases linearly with the string tension �(T ) for largeseparations signalizing on�nement.On the other hand, in the deon�ned phase the free energy of a stati quark-antiquark pair remains �nite even at large separations and the Polyakov loopmay aquire a non-vanishing expetation value hL(~x)i 6= 0. Thene we interpretthe Polyakov loop as an order parameter for the deon�ning phase transition inthe pure gauge theory2.Below the ritial temperature we have a on�ning vauum with thermalutuations exiting a dilute gas of glueballs, while the high temperature regionis haraterized as a gluon plasma phase with freely moving but still interatinggluons. In this phase stati olour harges would be Debye-sreened but noton�ned. For a deeper understanding in terms of forming ux tubes see forinstane [27, 28℄.To omplete the physial piture let us shortly touh the full theory inlud-ing dynamial quarks. In full QCD the low temperature phase orrespondsto the usual hadroni QCD vauum produing a rare�ed pion gas, whih anadequately be desribed by hiral perturbation theory. The high temperaturephase desribes a quark-gluon plasma reated for example in high energy nulei2This is not quite true: stritly speaking only the orrelator (3.41) has a physial meaningand may serve as an order parameter. The phase of the expetation value of hLi is not aphysially measurable quantity [25℄. Nevertheless, we will adopt here the traditional viewpoint[26℄.



3.3. The phase struture of lattie gauge theory 23or heavy ion ollisions and presumably realized at an early stage of the universe.For small quark masses the order parameter assoiated with the phase transi-tion is the quark ondensate h�qqi and the transition is related to the restorationof hiral symmetry.For a nie and thorough review on all these topis we refer to [29℄.3.3.2 Center symmetryUsually phase transitions are assoiated with the spontaneous breakdown of aglobal symmetry of the system. This is also the ase for lattie gauge theory at�nite temperature.In addition to loal periodi gauge symmetry assoiated with the olourgauge group SU(N), lattie gauge theory also enjoys invariane under a globalunitary transformation of all temporal link matries U4(~x; t) of a given temporalhyperplane with �xed t by a an element z of the enter3 Z(N) of SU(N),U4(~x; t)! zU4(~x; t) 8~x with t �xed: (3.49)The invariane under this global Z(N) symmetry is evident from the expliitform of Wilson's lattie ation,SWilson =� X1�i�j�3�1� 1NRe Tr Ui(x)Uj(x+ î)U yi (x + ĵ)U yj (x)�+� X1�i�3�1� 1NRe Tr Ui(x)U4(x+ î)U yi (x+ 4̂)U y4 (x)� ; (3.50)but of ourse also applies for the FP ation parametrized using smeared links.The argument is simple and applies to any loal ation. This an easily be seenby onsidering that any loal losed loop must pass a given spatial hypersurfaebetween t and t + a an even number of times, equally in both possible dire-tions, and thereby anelling the extra fators. Although the ation and loalobservables are invariant under these enter transformations, the Polyakov loop(3.43) is not, L(~x)! zL(~x): (3.51)As a onsequene of this fat, lattie on�gurations related by the enter sym-metry will our with equal probability if the ground state of the theory re-spets the enter symmetry. Thus the same number of on�gurations will on-tribute to the expetation value of the Polyakov loop the values L with phasese2�ik=N ; k = 0; : : : ; N�1, �nally ausing the expetation value to vanish due toPk exp(2�ik=N) = 0. As we have seen in the previous setion this orrespondsto the low temperature, on�ning phase of the pure gauge theory with hLi = 0.Per ontra, in the high temperature, deon�ning phase with hLi 6= 0 the entersymmetry is neessarily broken4.3The enter of a group G onsists of the subgroup of elements z ommuting with all groupelements, i.e. zgz�1 = g for all g �G. In the ase of SU(N) being the gauge group, the enterZ(N) ontains the N matries expf2�ik=Ng; k = 0; : : : ;N � 1.4It goes without saying that for �nite volumes the ground state will tunnel between the Ndegenerate vaua and hene fore hLi still to be zero. This an be regarded as a onsequene



24 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryIt an be argued on grounds of the Z(N) symmetry that the ritial be-haviour of the SU(N) pure gauge theory is that of a three dimensional Z(N)symmetri spin model with ferromagneti short range interations [30, 31, 32,33, 34℄5. This expetation has been on�rmed in [37℄.As for illustration �gure 3.1 shows the restoration of the enter symmetry asthe inverse temperature � of the system is dereased below the ritial oupling�. Note the tunneling of the system between the degenerate vaua in thedeon�ned phase. The phase hanges and the oexistene of the two phases areillustrated in �gure 3.2 where we show a typial Monte Carlo time history on a4�123 lattie near the ritial oupling of the FP ation. At the ritial ouplingthe system ips between the ordered and the disordered phase giving rise tothe learly visible double peak struture in the probability distributions of theenergy and the order parameter, typial for a �rst order phase transition. Figure3.3 shows the probability distributions of the Polyakov loop order parameter,jLj, and the energy at the ritial oupling of the FP ation on a 2�103 lattie.Despite this impressive evidene for a �rst order phase transition one has tobe areful: the harateristi �rst order phase transition disontinuities in phys-ial quantities like the Polyakov loop suseptibility �L or the order parameterare washed away on �nite latties. Nevertheless one may invoke a �nite sizesaling analysis of thermodynami quantities in order to determine the order ofthe phase transition. Suh an analysis is learly beyond the sope of the presentwork, however, it has been done for example in [38, 39, 26, 40, 37℄ with learevidene for the �rst order nature of the SU(3) deon�nement phase transition.3.4 Determination of the temporal saleConsider the statistial partition funtion of a quantum mehanial system attemperature T , Z(T ) = Tr e�H=T : (3.52)Here, H is the Hamiltonian of the statistial system and Tr denotes the thermaltrae, i.e. the sum over all states Pnhnje�H=T jni. Using the transfer matrixapproah as outlined in setion 3.2 one an obtain a path integral representationfor the partition funtion. For pure Yang-Mills theory this amounts toZ = N Z DAe�S(�)[A℄; (3.53)where A denotes the gauge �elds and N is a normalization onstant. Thepath integral is arried out over all �eld on�gurations satisfying the periodiboundary onditions A�(~x; 0) = A�(~x; �) and S(�)[A℄ is the �nite temperatureof Gauss' law whih forbids a net harge in a �nite volume with periodi boundary onditions.Of ourse, these hanges of phases extending over the entire volume an not be aomplishedin an in�nite volume, simply reeting the fat that in this limit a single harge is no longerinonsistent with Gauss' law. It is therefore onvenient, for any pratial purposes, to replaeL by jLj.5In the ase of SU(2) one would expet the same ritial behaviour as for the three di-mensional Ising model, whih shows a seond order phase transition, and indeed exellentagreement between the ritial exponents of the SU(2) Yang-Mills theory and the 3-d Isingmodel has been found [35, 36℄.
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Figure 3.2: Monte Carlo time history of the modulus jLj and the phase � =arg(L) of the Polyakov loop order parameter L = jLjei� on a 4� 123 lattie at� = 2:91 near the ritial value of the FP gauge ation. The noisy regions in theangle plot indiate time intervals during whih the system is in the symmetriphase where the angle is not well de�ned. The remaining time is spend inone of the three broken degenerate phases where the angle takes the values� � 0;�2�=3.ation S(�)[A℄ = 12 Z �0 d� Z 1�1 d3xTr(F�� (~x; �)F��(~x; �)); � = 1T : (3.54)Introduing a lattie regularization for (3.53) with lattie spaing a in oordinatespae the orrespondene with a lassial statistial system is even more evident.Thus we onlude that the quantum �eld theory at �nite temperature T isequivalent to a Eulidean �eld theory on a spae-time with ompati�ed timediretion of extension 1=T .The lattie regularized version of (3.53) an be written down asZ = N Z DUe�S(�)[U ℄; (3.55)where the integration is over the gauge link variables U subjet to periodiboundary onditions in time diretion, U(~x; 0) = U(~x; �). The ation S(�)[U ℄is the sum of some lattie version of F��(x)F�� (x) over all lattie sites. In timediretion the lattie extends over a �nite number of lattie sites, N� , while inspae diretion the number of lattie sites, N� , is in�nite in the thermodynamilimit. Aording to the analogy desribed above the inverse temperature 1=Tis related to the temporal extension of the lattie by 1=T = N�a thereby �xingthe lattie spaing in physial units. Sine N� an only take disrete values itis onvenient to hold this relation �xed while varying the gauge oupling � andtherefore impliitly the lattie spaing a. In this way we move the lattie systemthrough the phase transition obtaining �nally1T = N�a(�): (3.56)
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Figure 3.3: Probability distributions of the Polyakov loop order parameter, jLj,and the energy on a 2 � 103 lattie. The highlighted distributions show theresults at the �nite volume ritial oupling �(Nt = 2) = 2:3593 obtained byreweighting results at nearby �-values.



28 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryIn order to get a �rst impression and some feeling about the lattie spaingswe are dealing with let us alulate the temporal sale a in physial units. Foronveniene we adopt the value from [41℄ for the ritial temperature, T '276(2)MeV, and take it as a de�nition for the moment. The resulting quantitiesare olleted in table 3.1 and based on the results obtained in setion 3.5 withthe FP ation. The error in the sale omes entirely from the unertainty in theN� � a� [fm℄2 2.361(1) 0.3575(7)3 2.680(2) 0.2383(6)4 2.927(4) 0.1787(3)Table 3.1: Temporal sale of the FP ation at the ritial ouplings of N� = 2; 3and 4.determination of the ritial oupling and thene in the ritial temperature.3.5 Determination of the ritial ouplingsThere are several alternative methods for determining the ritial ouplings.They all give the same ritial ouplings � as the spatial volume is inreasedto in�nity. At �nite volume, however, the deviation of the estimate from � atin�nite volume depends on the method applied. One possible method employedin the early days of �nite temperature simulations on the lattie is to measurethe deon�nement fration [26℄,fd(�) = 32f20(�) � 12 ; (3.57)where f20(�) is the fration of measurements at a given �-value for whih thephase of the Polyakov loop, � = arg(L), lies within the range of �20Æ aroundthe Z(3) roots e2�ik=3; k = 0; 1; 2. The ritial oupling � is then de�ned asthe point where fd(�) takes a given value. Originally [26℄, the value fd = 12 wasexploited and it was shown that the results are onsistent with using f30 insteadof f20. This method provides a de�nite value of � by linearly interpolating fromfd(�)-values braketing 12 and also allows reasonable error estimates. Choosinga di�erent riterion fd(�) = 34 , as for example in [38, 41, 42℄, leads to di�erentritial oupling values at �nite volumes whih, in any ase, should oinidein the limit of in�nite spatial volume. However, our �ndings are ompletelyopposite: we determined the ritial values with both the fd(�) = 12 and fd(�) =34 de�nition on small volumes and performed the �nite size saling. The obtainedin�nite volume ritial ouplings di�er from eah other signi�antly. This isan indiation that the �nite saling regime on the small latties has not beenreahed for these quantities. Our observation is in omplete agreement with[42℄ and relies on the fat that there is no rigorous �nite size saling for �determined from the deon�nement fration6.Sine we are working on relatively small spatial volumes it is thus ertainlyneessary to refer to a de�nition of the ritial oupling whih relies on a quantity6See also the disussion in [37℄ and [42℄.



3.5. Determination of the ritial ouplings 29with de�nite �nite size saling. Suh physially better motivated quantities arefor example response funtions like the spei� heat or the suseptibility of the�nite temperature system. For instane the suseptibility of the order parameterin the pure gauge theory, the Polyakov loop suseptibility, is de�ned as�L � V �hjLj2i � hjLji2� ; V = N3� ; (3.58)and is expeted to have a rigorous �nite size saling behaviour. In the thermo-dynami limit, the suseptibility develops a delta-funtion singularity at a �rstorder phase transition. On a �nite lattie the singularity is rounded o� and thequantity reahes a peak value, �peakL , at �(V ). In the in�nite volume limit,the singularity emerges from the saling of the height of the peak and its width(determining the �nite volume shifts Æ� in the ritial oupling) aording to7�peakL � V; Æ� � 1V : (3.59)Using this de�nition, the determination of � at �nite volumes is plagued byonsiderable unertainties for small volumes due to the broad width of the peakof �L as demonstrated in �gure 3.4.
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Figure 3.4: Polyakov loop suseptibility at N� = 4 normalized by the volume,�L=V , as a funtion of � for various spatial volumes with N� = 8; 10; 12; 14.The solid urve represent the results of reweighting with the spetral densitymethod and the dashed lines denote the error bars.Nevertheless, pronouned peaks are visible for the spatial volumes withN�=N� � 2:5 whih we �nally onsidered (see setion 3.5.2) in the analysis.At last, the exat ritial oupling has been determined by extensively usingthe spetral density reweighting method whih enables the alulation of ob-servables away from the values of � at whih the simulations are performed.7For a seond order phase transition one expets �peakL � V =d� and Æ� � V �1=d� with; � being the onventional ritial exponents and d the dimension of the system.



30 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryThis method has been �rst proposed by [43, 44℄ and was later emphasized byFerrenberg and Swendsen [45, 46℄. In appendix C we give a detailed desriptionof the method and illustrate its appliation by means of simple models like theIsing model and the q-state Potts model in two dimensions.The strategy as outlined above has already been suessfully applied to SU(3)pure gauge theory [37, 47, 42℄ as well as full QCD [48℄.3.5.1 Simulation detailsWe performed a large number of simulations on latties with temporal extensionN� = 2; 3 and 4 at three to six di�erent �-values near the estimated ritial �.Various spatial extensions N�=N� = 2:5 : : : 5 were exploited with the intentionof examining the �nite size saling of the ritial ouplings. Con�gurations weregenerated using a Metropolis step followed by an overrelaxation step ating onSU(2) subgroups.At eah �-value we �rst let the system run for thermalization. Usually wespend 500 to 1000 sweeps depending on whether the starting on�guration wasrandomly generated or a on�guration thermalized at a nearby �-value. Forsome remarks related to inomplete thermalization we refer to setion 3.5.3about error estimation.In the equilibrated system we measured the real and imaginary parts of allPolyakov loop operators averaged over the whole lattie as well as the energyof the on�guration after eah sweep. Both the ation values and the modu-lus of the Polyakov loop operator were stored for later use in the reweightingproedure.The simulation details and run parameters are olleted in tables 3.2,3.3 and3.4, where we list the lattie size together with the �-values and the numberof sweeps. The number of sweeps as a measure of the olleted statistis isinadequate for phase transitions (see the disussion in setion 3.5.3), beauseit is rather biased by the persistene time and the ritial slowing down. Thepersistene time of one phase is de�ned as the number of sweeps divided bythe observed number of ip-ops between the two phases [37℄. This quantityis sensitive only for �-values nearest to the ritial oupling � and has to betaken with a large grain of salt: for the small volumes whih we exploited theutuations within one phase an be as large as the separation between the twophases, and the transition time from one state to the other is sometimes as largeas the persistene time itself.In the last two olumns we list the estimated persistene time �p and theintegrated autoorrelation time �int of the Polyakov loop operator. Note that theintegrated autoorrelation time grows signi�antly near the phase transition8and an therefore serve as a �rst rude estimate of the ritial ouplings.3.5.2 Analysis detailsFor the determination of the ritial ouplings in the thermodynami limit weresort to a two step proedure. First, we determine the ritial oupling with its8In fat the integrated autoorrelation time is expeted to diverge near seond order ritialpoints aording to the dynamial saling law �int � �z where � is the orrelation length andz is the dynamial ritial exponent. At a �rst order transition the orrelation length remains�nite, however, it may appear divergent due to the presene of tunnelings.
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lattie size � sweeps �p �int2� 103 2.3550 30000 260.52.3575 30000 4300 283.02.3560 30000 4600 280.02� 83 2.3300 14240 29.62.3500 10144 93.52.3550 5120 127.92.3575 12288 1400 202.42.3700 10144 114.72� 63 2.3250 8096 35.62.3500 14144 650 105.42.3600 10000 700 96.82.3750 10144 39.2Table 3.2: Run parameters of the �nite temperature simulations at N� = 2.
lattie size � sweeps �p �int3� 123 2.675 25000 114.82.680 45000 3200 188.92.685 24000 96.32.690 20000 53.43� 103 2.670 18000 67.02.680 42000 2300 89.22.685 48000 2400 104.42.690 27000 85.33� 83 2.650 10096 43.12.660 10000 48.32.670 26000 41.22.680 30000 1400 64.32.690 19000 53.52.710 10000 35.5Table 3.3: Run parameters of the �nite temperature simulations at N� = 3.



32 Chapter 3. The deon�ning phase transition in pure Yang-Mills theorylattie size � sweeps �p �int4� 143 2.917 50405 4300 62.82.922 51812 4700 67.12.930 44607 64.44� 123 2.850 15000 19.72.890 15000 30.42.910 33000 34.92.920 33000 3700 66.42.930 15000 38.24� 103 2.850 10000 22.42.880 16000 37.92.890 21124 18.92.900 35000 34.22.910 35000 2100 36.02.920 20000 39.9Table 3.4: Run parameters of �nite temperature simulations at N� = 4.error on every lattie size by means of loating the peak of the Polyakov loopsuseptibility as desribed in setion 3.5 and in appendix C. In a seond step weextrapolate the ritial ouplings for eah value of N� to in�nite volume usingthe �nite size saling law for a �rst order phase transition9,�(N� ; N�) = �(N� ;1)� h�N�N��3 ; (3.60)where h is onsidered to be an universal quantity independent of N� [49℄. Infat, one often assumes the value h � 0:1 determined on small N� latties alsofor the extrapolation at larger N� [47, 41, 49℄. In our simulations of the FPation the universality of the �nite size saling law seems to be appliable toN� = 2 and N� = 4 while the behaviour at N� = 3 is not lear to us.In �gure 3.5 we show the pronouned peaks of the Polyakov loop susepti-bility for some of the simulated lattie sizes. The �gures from the other vol-umes look very similar. The solid lines are the interpolation obtained from theFerrenberg-Swendsen reweighting and the dashed lines represent the bootstraperror band estimation. All the interpolations are based on the olletive dataof the simulations listed in tables 3.2-3.4 for a given lattie size, although theruns at �-values far away from the ritial oupling do not inuene the �nalresult10. By virtue of the reweighted urve we determine the ritial ouplingas the loation of the peak of the Polyakov loop suseptibility. The numerialresults of this analysis are listed in table 3.5, where we display the �nite sizeritial ouplings together with the orresponding in�nite volume limit and thesaling onstant h. The �nite size saling behaviour for eah N� is shown in�gure 3.6.9See remarks and disussion in the introdution of setion 3.5.10This is due to the fat that the distribution of on�gurations at a �-value far away fromthe ritial oupling has a vanishing overlap with the distribution obtained at the ritialoupling �.
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Figure 3.5: The Polyakov loop suseptibility on latties of size 4 � 123; 3 �123; 3 � 103 and 2 � 103. The solid urves are the interpolations using thespetral density method, the dashed lines show the bootstrap error bands. Theinterpolations are based on the data of the simulations as displayed in table 3.2,3.3 and 3.4. N� �(N� = 2) �(N� = 3) �(N� = 4)6 2.3552(24)8 2.3585(12) 2.6826(23)10 2.3593(7) 2.6816(12) 2.9119(31)12 2.6803(10) 2.9173(20)14 2.9222(20)1 2.3606(13) 2.6796(18) 2.9273(35)h 0.14(9) -0.05(7) 0.25(9)Table 3.5: Results of the ritial ouplings � from the peak loation of thePolyakov loop suseptibility and the orresponding in�nite volume limit ob-tained aording to relation (3.60). The �nite size saling onstant h is alsogiven.
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Figure 3.6: Finite size saling of the ritial ouplings as a funtion of the inversevolume for N� = 2; 3 and 4. The solid line represents a linear �t to the dataand the �lled irles are the orresponding in�nite volume extrapolation.



3.5. Determination of the ritial ouplings 35It is also interesting to hek the �nite size saling behaviour of the Polyakovloop suseptibility peak, �peakL , as a funtion of the volume aording to (3.59).These results are shown in �gure 3.7, where we ompare the ratio �peakL =V withthe value expeted from the disontinuity of the Polyakov loop expetationvalue, �peakLV = �12�L�2 : (3.61)For N� = 2 and 4 the observed saling looks onvining while it is not at allonlusive for N� = 3. However, we have to admit that the volumes whih weould exploit are too small to make any rigorous statements. Nevertheless, in allthree ases we observe good agreement with the value from formula (3.61). As isevident from �gure 3.7 and eq. (3.61), the expetation value of the Polyakov looporder parameter L gets smaller for larger values of N� . Indeed, it is expetedto vanish exponentially in N� .One last remark onerns the double peak struture in the distribution ofobservables expeted at a �rst order phase transition. The gap between thepeaks in the orresponding histograms experienes large volume dependeneand is smeared out for small volumes. This e�et is even more pronouned forthe energy distribution and we ould observe the double peak struture onlyat N� = 2 where a volume ratio as large as N�=N� = 5 ould be reahed.The orresponding energy histogram is shown in �gure 3.3. The fat that thisfeature of the phase transition needs large spatial volumes, i.e. N�=N� � 5, isin ompliane with the observation made in simulations of the Wilson ationon large volumes [37℄ where the double peak struture emerged learly only onlatties as large as 4� 243.
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Figure 3.7: Finite size saling of the Polyakov loop suseptibility peak normal-ized by the volume, �peakL =V , for N� = 2; 3 and 4. The dashed line representsthe estimated value expeted from equation (3.61) and the solid lines denote arude error band estimation.



3.5. Determination of the ritial ouplings 373.5.3 Error estimationIn this setion we will disuss how we determine the errors on the measuredquantities like the Polyakov loop suseptibility �L and the ritial oupling�. We will �rst dwell on the di�erent methods employed, disussing some ofthe properties like stability and reliability in general, and the appliation tothe ritial oupling in partiular. At the end we disuss possible soures ofsystemati errors.General onsiderationsThere are many methods in business for estimating the standard error of ameasurement. Widely used are the jakknife and bootstrap estimate of error.For an introdution see [50, 51℄.The non-parametri bootstrap is oneptually the simplest of all tehniquesand reveals the basi idea of resampling most learly. It extends the naiveestimate of standard deviation of a measured quantity in an obvious way, sothat it an be used to estimate the error on any arbitrary seondary quantity,no matter how ompliated it may be.The bootstrap an be ast into the following formal algorithm. Suppose adata set onsisting of an independent and identially distributed (iid) sample ofsize N from an unknown probability distribution F ,x1; x2; : : : ; xN iid� F: (3.62)Let F̂ be the empirial probability distribution of the observed MC data X1 =x1; X2 = x2; : : : ; Xn = xn, giving probability mass 1=n on eah Xi,X1; X2; : : : ; Xn iid� F̂ ; (3.63)and �̂ = �̂(X1; X2; : : : ; Xn) the estimator of an arbitrarily ompliated seondaryquantity.1. Draw a random sample X�i with replaement from F̂ and alulate anyseondary quantity �̂� = �̂(X�1 ; X�2 ; : : : ; X�n).2. Independently repeat step 1 a large number B of times to obtain bootstraprepliations �̂�1; �̂�2; : : : ; �̂�B .3. Estimate the error Æ�̂ on the estimator �̂ by alulating the bootstrap errorÆ�̂Boot, Æ�̂Boot =  1B � 1 BXb=1(�̂�b � �̂��)2!1=2 ; (3.64)where �̂�� =PBb=1 �̂�b=B.Formally, Æ�̂Boot is really de�ned as the limit of (3.64) as B ! 1, however, inpratie one is limited to some �nite value of B.For the reweighted Polyakov loop suseptibility we always used B = 50 and weheked in some ases that inreasing this number did not have any signi�ante�et on the error estimation.



38 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryThe above algorithm applies to independent measurements only. Sine wemeasure the Polyakov loop after every sweep, this premise is learly violated.To irumvent this drawbak one onsiders bloks of data and treats them asindependent. The resampling is then done by hoosing randomly the bloksand alulating the seondary quantity on the union of the hosen bloks. Asa onsequene of this proedure the error strongly depends on the size of theblok. To avoid severe under- or overestimation of the error we alulated thebootstrap error as a funtion of the blok size for eah run at a given �-value.We observed that the bootstrap error always reahed a stable plateau for bloksizes around 500 to 1000 sweeps.As a hek for the reliability of the bootstrap we treated every sweep asindependent and orreted for the residual autoorrelation by multiplying theerror estimate by the fator p2�int, where �int is the integrated autoorrelationtime. The error estimates obtained in this way yielded values omparable to thebootstrap estimates, while showing weak instability with regard to �-runs havingsimilar statistis. Nevertheless it supported our on�dene in the bootstrapproedure of estimating the error.Error estimate for �The bootstrap error estimation desribed above extends to the multi-histogramreweighting tehnique in a straightforward manner. In sampling theory it isnatural to onsider strati�ed situations where the sample spae H is a union ofdisjoint strata Hk, H = K[k=1Hk: (3.65)In the ase of the deon�nement transition the Hk's denote the sample spaesof the k simulated �-values �k. The data onsist of separate iid samples of sizeNk from eah stratum,xk1; xk2; : : : ; xkNk iid� Fk ; k = 1; : : : ;K; (3.66)where Fk is an unknown probability distribution on Hk. Observing Xki =xki; i = 1; : : : ; nk; k = 1; : : : ;K in a MC simulation, de�neXk1; Xk2; : : : ; Xknk iid� F̂k; k = 1; : : : ;K; (3.67)as the empirial probability distribution for eah stratum giving probabilitymass 1=nk on the Xki's and yielding an arbitrary funtional statisti�̂ = �̂(F̂1; F̂2; : : : ; F̂K) (3.68)of an arbitrary seondary quantity. The bootstrap estimate of standard devia-tion is now obtained by the following algorithm:1. Construt the F̂k's.2. Draw independent bootstrap samples X�ki; i = 1; : : : ; nk from F̂k ; k =1; : : : ;K and alulate any seondary quantity �̂� = �̂(F̂ �1 ; F̂ �2 ; : : : ; F̂ �K).3. Independently repeat step 2, B times, obtaining bootstrap repliations�̂�1; �̂�2; : : : ; �̂�B .



3.5. Determination of the ritial ouplings 394. Estimate the error Æ�̂ on the estimator �̂ by alulating the bootstrap errorÆ�̂Boot, Æ�̂Boot =  1B � 1 BXb=1(�̂�b � �̂��)2!1=2 ; (3.69)where �̂�� =PBb=1 �̂�b=B.As before, Æ�̂Boot is formally de�ned as the limit of (3.69) as B ! 1. Again,the algorithm applies to independent measurements only, thene we resamplebloks of de�nite blok size determined as mentioned above.In the ase of multi-histogram reweighting we an determine error estimatesfor any quantity involved like the spetral density funtion W (S) as well as thePolyakov loop suseptibilities reweighted at some given �-value. This is howwe determined the error bands in the �gures showing the Polyakov loop susep-tibility peaks. We go even a step further and determine the ritial oupling� by loating the peak of the Polyakov loop suseptibility for every bootstrapsample, �̂�b = �̂b and estimate the error on � from (3.69). Sine the alula-tion of the �̂b 's involves many non-trivial steps, the estimated error has to betaken with aution. However, we heked for the stability and reliability of theestimate by employing several tests. For example we estimated the error on �using a blok size of one measurement only and orreting with the usual fatorp2�maxint , where �maxint = max(�kint; k = 1; : : : ;K). This proedure usually yieldeda slightly larger error estimate than with the standard bootstrap method.As another more serious hek we disarded one or several runs at given�-values in order to hek for the stability of the peak loation and to testonsisteny among di�erent �-runs. In almost all ases the ritial oupling� varied only within the usual 90% on�dene interval (' �1:6Æ�), againsupporting our reliane on the error estimation proedure employed.Possible soures of systemati errorsWhile the previous setions deal with the error of statistial kind only, we arealso faing the problem of undeteted systemati errors. There are two possiblemain soures of systemati errors involved, �rstly, inomplete thermalization,and seondly, elusive and thus insuÆient statistis as explained below. Whilethe �rst soure is rather easy to detet and straightforward to irumvent, wedo not know any heap remedy for the ure of the latter exept inreasing thestatistis so as to obtain enough phase ips.As we already mentioned in setion 3.5.1 we disarded a number of sweeps atthe beginning of eah run to eliminate e�ets due to inomplete thermalization.Usually leaving out the �rst 500 to 1000 sweeps were enough, depending on ifone starts from a random on�guration or from a on�guration thermalized ata nearby �-value. In eah ase we heked that an inrease in the number ofdisarded sweeps had no systemati e�et on the mean value or the utuationsof the quantity under onsideration. In this way one an also rule out possiblee�ets from hysteresis.In one ase (Nt = 4; Ns = 14; � = 2:930) we ould observe suh a systematishift of the Polyakov loop suseptibility. Presumably this is a hint at havinginsuÆient statistis at this �-value, however, it had no e�et on the ritial�-value obtained by reweighting.



40 Chapter 3. The deon�ning phase transition in pure Yang-Mills theoryAs for the seond soure, the situation is more problemati. Near the phasetransition the number of ips between one and the other phase is the ruialquantity as a measure of the quality of the olleted data, rather than the num-ber of sweeps. However, for larger latties the system remains in one of thephases for longer periods of MC time, making it hard to deide if one is nearthe phase transition. For the largest lattie onsidered (Nt = 4; Ns = 14) weobserved periods as large as 5000 sweeps in between the phase hanges, thusyielding in this 'worst' ase only of order 10 ips despite the large numberof sweeps. Sometimes we observed that inreasing the statistis only slightlyyielded values for the suseptibility leaving the 95% on�dene interval unex-petedly often, while not improving on the statistial error. This may be anindiation that the statistial error runs into the trouble of easily underesti-mating the e�etive error near the phase transition, even when alulated withelaborated methods like the bootstrap. Thene having of order 10 to 20 ipsnear the phase transition is the lowest possible edge of statistis to have. How-ever, the reweighting tehnique again seems to smooth over this fat in themanner that it ombines the data from di�erent �-values and thus enlargingthe aessible information on the system by a onsiderable amount. In mostases the reweighting tehnique yielded a stable �-value already when onsid-ering only half of the statistis, and the inreased statistis was e�etively usedonly for onsolidating and stabilizing this value.Nevertheless, the danger of having elusive data an not be ruled out and onlyolleting larger statistis will turn this soure of systemati error negligible.3.6 Conlusions and outlookIn this hapter we have disussed in some detail the �nite temperature de-on�ning phase transition in pure gauge theory and the determination of theorresponding ritial ouplings of the parametrized FP ation at N� = 2; 3 and4. The small statistis and small lattie sizes aessible to us due to the om-putational overhead of the parametrized FP ation present the main obstalesin our alulations. As is pointed out in the last setion it would be desirableto have at least of the order of 20 ips or more between the two phases so as toexlude possible systemati e�ets. In addition, it would be useful to simulateon larger latties like 4� 163 and 3� 143 in order to hek if the �nite size sal-ing region is really reahed. Suh studies on larger latties are surely needed tolarify the situation at N� = 3, where the strange �nite size saling behaviour isnot yet understood. In this sense, the quoted errors are to be taken with greatare, as disussed in setion 3.5.3.Another possible diretion of future work is the determination of the rit-ial ouplings at N� = 5 or 6 in order to hek the saling behaviour of theparametrized FP ation at lattie spaings smaller than a ' 0:15.It is lear that suh projets are very demanding with respet to omputerresoures, however, there is no fundamental problem to it. Due to the sophis-tiated analysis methods whih we have developed and whih allow one to digout the needed physial information on the system, it is enough to performlong enough simulations near a phase transition at three or four oupling valuesonly. This, of ourse, simpli�es enormously the task of determining the phasetransitions.



Chapter 4Saling properties of the FPation4.1 IntrodutionIn this hapter we aim at a systemati quantization of the improvements ahievedwith the present parametrization of the FP ation. It is of ruial importanefor any improvement proedure to size the remaining lattie artifats and tohek the extent to whih lattie artifats are removed at the physially inter-esting lattie spaings. Another issue is to de�ne the range of validity of the FPprogram, i.e. to hek for a possible breakdown of the approah, if present, atvery oarse lattie spaings.Both these matters an be takled by investigating the saling behaviourof renormalization group (RG) invariant quantities on a large range of (oarse)lattie spaings. Any physial quantity measured on the lattie is renormalizedby appropriately tuning the lattie spaing when the ontinuum limit � ! 1is taken and thene any given quantity measured in units of the lattie spaingsales aording to its dimension. Saling an best be seen in dimensionless ra-tios or produts of physial quantities whih are RG invariant and thus shouldbe onstant for all values of the gauge oupling and, orrespondingly, for all lat-tie spaings. Any deviation from this saling behaviour is due to the preseneof lattie artifats.There is an in�nitely large set of quantities on whih the saling behaviourof di�erent ations, and in partiular the FP ation, an be tested. Amongthem are the stati quark-antiquark potential and quantities derived from itlike the string tension � or the hadroni sale r0, the harmonium, the torelonand the glueball spetrum, the deon�ning phase transition temperature as wellas other thermodynami quantities like the free energy, the latent heat and thesurfae tension in �nite temperature lattie gauge theory and the topologialsuseptibility to mention only a few. Some of these quantities have already beeninvestigated in the ontext of FP ations. For example in [6, 12℄ the saling ofthe torelon mass and the related string tension has been exploited as well as thestati potential at �nite temperature. Saling of the topologial suseptibility41



42 Chapter 4. Saling properties of the FP ationhas been suessfully tested in [12℄ and exellent saling of the free energy den-sity has been observed in [52, 53℄.The quantities whih we have hosen in this work in order to test the salingbehaviour of the FP ation are the deon�ning phase transition temperature T,the stati quark-antiquark potential at zero temperature, the hadroni sale r0and the e�etive string tension �.Another tempting and physially very interesting possibility to size lattieartifats and to ompare saling of di�erent ations is provided by the glueballspetrum. However, this is a heavyset �eld and therefore deserves a hapter byits own, f. hapter 5.The saling heks will be pushed to the extreme by exploring the behaviourof the FP ation on oarse on�gurations with very large utuations orre-sponding to N� = 2. This situation is presumably not relevant for pratialappliations, and indeed, it beomes more and more diÆult to measure physi-al quantities due to the very small orrelation length and the rapidly vanishingsignals. Nevertheless, it is still interesting to investigate this situation in orderto hek the region in whih the lassial approximation to the renormalizationgroup trajetory is still valid and, in addition, it might give the possibility ofonneting to strong oupling expansions of the gauge theory [54℄.Another matter onerns asymptoti saling. As opposed to saling, asymp-toti saling tests the behaviour of dimensionful quantities near the ontinuumlimit. In partiular, it predits the dependene of a given quantity on the bareoupling g. How far a spei� lattie gauge ation deviates from asymptotisaling is a legitimate and important question. However, it is addressed hereonly at the very edge for the ase of r0.The hapter is organized as follows. In the �rst setion we will investigatethe saling behaviour of the heavy quark-antiquark potential, thereby desribingproedures and tehniques for measuring the potential on the lattie. The seondsetion deals with the saling of the ritial temperature of the deon�ningtemperature, T, and quantities related to the stati potential like r0 and �,and reports on the details of the extration of these quantities. Finally, in thelast setion we summarize the results and give a �rst, preliminary onlusion onthe saling behaviour of the FP ation.4.2 Saling of the stati quark-antiquark poten-tialOne of the rather easily aessible quantities mentioned in the introdution isthe stati quark-antiquark potential. It provides an immediate and e�etive testof saling: the ombinations r=r0 and r0V (r) are dimensionless and thus RGinvariant. The potential data measured at di�erent values of the gauge oupling� should overlap with eah other when the saling region of this observable isreahed. In addition, one an alulate the quantities r0 and � from the potential



4.2. Saling of the stati quark-antiquark potential 43as explained below and they an be used in turn for testing the saling of thedimensionless ombinations r0T; T=p� and r0p�.Violations of rotational invariane have been found to be strong for thestandard plaquette gauge ation at oarse lattie spaings [55, 56, 6℄ and there-fore it is desirable to improve the gauge ation also on large utuations. In[8℄ it was pointed out that for an appropriately hosen renormalization grouptransformation one �nds a FP ation with short interation range and smallviolations of rotational symmetry in the stati quark-antiquark potential evenat shortest distanes. This was shown by means of the stati potential at �nitetemperature using FP Polyakov loops in the linear approximation. The remain-ing rotational symmetry violations in the potential were suspeted to originatefrom the missing diret interation between diagonally separated links in thatformer parametrization of the FP ation given in [8℄. The new parametriza-tion presented in this work inludes suh interation terms, whih are ertainlypresent in the true FP ation, and thus is expeted to show even less viola-tions of rotational invariane in the potential as observed before. Our intentionfor measuring the stati quark-antiquark potential is however not to test therotational invariane, but rather aims at the determination of r0 and �.4.2.1 The stati potentialIt is well known that the stati quark-antiquark potential in lattie gauge theoryis related to the expetation value of the retangular Wilson loop W(R; T ) viahW(R; T )i � e�V (R)T (4.1)for large T . Here, R and T denotes the spatial and temporal extent of theWilson loop, respetively. One an interpret the expetation value of a Wilsonloop pitorially as the reation of a quark-antiquark pair at time t = 0 at pointx = R=2, separating instantaneously to x = R and x = 0 and then evolving fortime T until it annihilates. Thus the potential an be determined in prinipleby alulating the limit V (R) = limT!1� 1T lnhW(R; T )i: (4.2)In (pure) lattie gauge theory the potential is expeted to on�ne quarks and,more preisely, to grow linearly for large separations,limR!1V (R) � �R; (4.3)where � is the so alled string tension. This area law behaviour of the Wilsonloop is on�rmed in every order of a systemati strong oupling expansion for� [57, 58℄. Per ontra, from asymptoti freedom one expets a Coulomb-likeinteration V (R) � �=R of the quark-antiquark pair at short distanes. There-fore, a simple ansatz desribing (phenomenologially) a stati quark-antiquarkpotential, simultaneously exhibiting on�nement and asymptoti freedom is theCornell potential [59℄, V (R) = V0 + �R + �R: (4.4)For the understanding of on�nement the ability to alulate the potentialnon-perturbatively is ruial. At present the only non-perturbative alulation



44 Chapter 4. Saling properties of the FP ationof the quark-antiquark potential is by determining the expetation value of theWilson loop numerially in Monte Carlo simulations. For all pratial purposes,one is restrited to �nite R and T and the relative errors of the Wilson loopexpetation values inrease exponentially with temporal extension T . To reduethese statistial utuations one an use thermally averaged temporal links [60℄,but it is even more vital to enhane the overlap with the physial ground stateof the system. This an be ahieved by invoking for instane iterative spatialsmearing tehniques (see e.g. [61℄). The tehniques whih we use are desribedin detail in setion 4.2.3.4.2.2 Determination of the spatial saleAn important part of any lattie simulation is the determination of a physialsale in order to onvert quantities measured on the lattie into physial units.This an be aomplished by hoosing one physial quantity as a referene sale.Any quantity whih an be easily and aurately determined numerially onthe lattie as well as experimentally will do. A typial referene quantity inlattie gauge theories is the mass of a low-lying hadron, however, in pure gluon-dynamis we have to resort to a purely gluoni quantity (whih, nevertheless,should be de�ned in full QCD as well). As outlined in setion 3.4 the ritialtemperature T of the deon�nement phase transition is suh a referene sale.More easily aessible is the determination of the sale through the stati quark-antiquark potential, where one refers to the string tension � to set the sale.Nevertheless, this method is plagued by two major diÆulties: �rstly and mostimportantly, the noise/signal ratio beomes large in the region where one needsan aurate determination of the potential, f. eq. (4.1) and (4.3). In addition,due to the fat that the exited string has a small energy gap at large distanesR,the ground state beomes diÆult to resolve with standard methods. Seondly,and less importantly, the string tension is not well de�ned in full QCD due tostring breaking.To irumvent these problems a hadroni sale r was introdued [62℄ throughthe fore F (r) between stati quarks in the fundamental representation at inter-mediate distanes 0:2 fm � r � 1:0 fm, where we have best information availablefrom phenomenologial potential models [59, 63℄. The advantages of this hoieare manifold: the sale is de�ned preisely both in pure gauge theory and in fullQCD and it an be determined well numerially with good statistial preision.This quantity is therefore regarded to be tehnially more appropriate than thestring tension to �x the sale. We haver2V 0(r) = r2F (r) � ; (4.5)where originally [62℄  = 1:65 was hosen yielding a value r � r0 ' 0:49 fm =(395MeV)�1 from the potential models.However, also this alternative way of setting the sale is hampered by somedrawbaks as will be pointed out in setion 4.3.2. Firstly, there is no 'unique'method for alulating the derivative in eq. (4.5). For example, one an use theansatz in eq. (4.4) for interpolating the potential either loally around r only,or globally by inluding as many potential values as possible. In addition, thepossibility of hoosing di�erent points r for determining the fore in (4.5) in-trodues ambiguities whih are beyond the statistial unertainties, partiularly



4.2. Saling of the stati quark-antiquark potential 45on oarse latties, and indeed, measurements of r0 from several groups di�ersigni�antly from eah other1. It is therefore fair to say, that, sine the ambigu-ities beome negligible on �ne latties, r0 is an appropriate sale for performingontinuum limit extrapolations from �ne latties, however, its use on oarse lat-ties with a � 0:1 fm is questionable, espeially when an auray level of lessthan 2% is required.In order to estimate the systemati ambiguities we have determined r0 fromglobal �ts to the potential as well as from loal �ts using di�erent values of rand . Referring to preision measurements of the low-energy referene salein quenhed lattie QCD with the Wilson ation [64, 65, 66℄ we have olletedvalues for  and r in table 4.1. These are the values whih we use for ther=r0 0.662(1) 0.891.00 1.651.65(1) 4.002.04(2) 6.00Table 4.1: Parameter values for the determination of the hadroni sale througheq. (4.5). The numbers in the �rst line and in the two last lines are fromhigh-statistis measurements of the stati q�q-potential using the Wilson ation[66, 65℄.determination of the spatial sale, but unfortunately they already inorporatesome of the systemati ambiguities disussed above.4.2.3 Simulation detailsWe performed simulations with the FP ation at six di�erent �-values, of whihthree orrespond to the ritial ouplings determined in hapter 3. Con�gu-rations were updated by ombining a Metropolis sweep with an overrelaxationsweep ating on SU(2) subgroups. The spatial extent of the latties were hosento be at least � 1:5 fm, based on observations in [66, 67℄2. We measured theorrelation matrix of Wilson loops after every seond or �fth updating sweep,f. the run parameters in table 4.2 where we list the values of the ouplings,the lattie volumes and sizes together with numbers relevant for the obtainedstatistis.In order to enhane the overlap with the physial ground state of the po-tential we exploited smearing tehniques. The operators whih we measuredin the simulations are onstruted using the spatial smearing of [61℄. Thesmoothing of the spatial links has the e�et of reduing exited-state ontam-inations in the orrelation funtions of the Wilson loops in the potential mea-surements. The smoothing proedure we use onsists of replaing every spatial1See for example the olletion of data from measurements with the Wilson ation in [64℄.2Within their statistial errors (' 1%) the authors of [66, 67℄ do not observe any �nitesize e�ets a�eting the potential values on varying the spatial lattie extent between L = 0:9fm and L = 3:3 fm. On the other hand, the authors of [65℄ observe signi�ant �nite volumee�ets on the 1 - 1.5 % level for the string tension � on latties as large as L = 1:7 fm, whiler0 is muh less a�eted.



46 Chapter 4. Saling properties of the FP ation� lattie volume lattie size [fm℄ # bins bin size # meas./bin3.400 144 1.45 43 180 903.150 124 1.61 42 500 502.927 144 2.39 40 200 402.860 104 1.84 43 180 902.680 124 2.72 51 200 402.361 124 4.02 57 200 40Table 4.2: Run parameters for the simulations of the stati quark-antiquark po-tential. Values for the oupling, the lattie volumes and sizes are listed togetherwith harateristi numbers for the obtained statistis.link Uj(n); j = 1; 2; 3 by itself plus a sum of its neighboring spatial staples andthen projeting bak to the nearest element in the SU(3) group3:S1Uj(x) � PSU(3)nUj(x) + �sXk 6=j(Uk(x)Uj(x + k̂)U yk(x+ ĵ) (4.6)+U yk(x � k̂)Uj(x � k̂)Uk(x� k̂ + ĵ))o:Here, PSU(3)Q denotes the unique projetion onto the SU(3) group elementW , whih maximizes ReTr(WQy) for any 3 � 3 matrix Q. The smeared andSU(3) projeted link S1Uj(x) retains all the symmetry properties of the origi-nal link Uj(x) under gauge transformations, harge onjugation, reetions andpermutations of the oordinate axes. The whole set of spatially smeared links,fS1Uj(x); x�L4g, forms the spatially smeared gauge �eld on�guration. An op-erator O whih is measured on a n-times iteratively smeared gauge �eld on�g-uration is alled an operator on smearing level Sn, or simply SnO. In the simu-lation of the stati �qq-potential we used smearing levels Sn with n = 0; 1; 2; 3; 4.The smearing parameter was hosen to be �s = 0:2 in all ases.The orrelation matrix of spatially smeared Wilson loops are onstruted inthe following way4. At �xed t we �rst form smeared string operators along thethree spatial axes, onneting ~x with ~x+Rî,SnVi(~x; ~x+Rî; t) =SnUi(~x; t)SnUi(~x + î; t) : : :SnUi(~x+ (R� 1)̂i; t); i = 1; 2; 3; (4.7)and unsmeared temporal links at �xed ~x, onneting t with t+ T ,V4(t; t+ T ; ~x) = U4(~x; t)U4(~x; t+ 1) : : : U4(~x; t+ (T � 1)): (4.8)3The SU(3) projetion is done by applying SU(2) subgroup projetions.4Note that we are onerned with a 5 � 5 orrelation matrix in the ase where we usesmearing levels Sn with n = 0; 1; 2; 3; 4.



4.2. Saling of the stati quark-antiquark potential 47The smeared Wilson loop5 is then obtained by alulatingWlm(R; T ) =X~x;t 3Xi=1 TrSlVi(~x; ~x+Rî; t)V4(t; t+ T ; ~x+Rî)SmV yi (~x; ~x+Rî; t+ T )V y4 (t; t+ T ; ~x); (4.9)and �nally we de�ne the orrelation matrix aording toClm(R; T ) = hWlm(R; T )i = Cml(R; T ); (4.10)where the average is estimated by means of the Monte Carlo simulation. In thefollowing the orrelation matries are analyzed using variational tehniques asdesribed in the subsequent setion.4.2.4 Analysis details and resultsIn order to extrat the physial sale through equation (4.5) we need an inter-polation of the potential and orrespondingly the fore between the quarks forarbitrary distanes r not restrited to integers orresponding to the lattie sites.This interpolation of V (r) is ahieved by �tting a potential of the form (4.4) tothe measured potential values. We use this simple ansatz in order to alulatethe fore (derivative of V ) in eq. (4.5). The potential an be very well desribedwith this ansatz, but of ourse we do not laim that it has exatly this form.We employ a two step proedure for the �tting: First we extrat the poten-tial values V (r) for eah r separately using the variational tehniques desribedin setion D.1. This method also gives a linear ombination of the string op-erators SnV; n = 0; : : : ; 4, whih projets suÆiently well to the ground stateof the string, i.e. eliminates the losest exited string states. Based on e�e-tive masses and on a �2-test taking all temporal orrelations into aount asdesribed in setion D.2 we hoose a plateau region from tmin to tmax wherewe �t the exponential form Z(r) exp(�tV (r)) to the ground state orrelator,arefully heking the stability of the �t under variation of the �t parameters.The results of these �ts are olleted in table F.2 in appendix F, where we listthe plateau regions (�t range), the extrated potential values V (r) and the �2per degree of freedom, �2=NDF. The unertainties in the extrated values forV (r) are alulated using a non-parametri bootstrap method.One we have determined a suitable plateau region for eah r we performthe seond step by �tting the expression Z(r) exp(�t(V0 + �=r + �r)) diretlyto the orrelation matriesWlm(r; t) projeted to the ground state of the string,simultaneously for all r and the previously hosen t-values. This step allowsto take into aount all orrelations among the orrelation matrix elements forboth di�erent r and t by using a �2-funtion with the orresponding ovarianematrix. The �t range in r is hosen by arefully examining the �2-funtionand the stability of the �tted parameters aV0; � and �a2, while keeping the �tranges in the t-values �xed for eah r separately. Again, the quoted errors areestimated through the utuations of the �t parameters and all other indiretlyalulated quantities like r0=a determined from the -values in table 4.1, on5Let us remark that we measure the on-axis potential only, i.e. Wilson loops having spatialextent in the diretion of the lattie axes î; i = 1; 2; 3 only.



48 Chapter 4. Saling properties of the FP ation500 bootstrap samples. The results of the global �ts are tabulated in table 4.3,where we quote the �t range in r, the parameters aV0; �; �a2 together with theirerrors for all �-values. The non-monotoni variation of � = �(�) shows learly,that � and �a2 are e�etive �t parameters. The last olumn quotes the �2 perdegree of freedom, �2=NDF.� �t range aV0 � �a2 �2=NDF3.400 2 - 6 0.7805(7) -0.251(9) 0.0629(13) 1.023.150 2 - 5 0.820(15) -0.285(20) 0.0992(27) 0.752.927 2 - 6 0.812(16) -0.272(20) 0.1606(33) 1.352.860 1 - 4 0.8007(48) -0.2623(33) 0.1885(17) 1.172.680 1 - 4 0.7766(52) -0.2547(37) 0.2871(15) 0.432.361 1 - 4 0.615(11) -0.1791(78) 0.6286(37) 0.99Table 4.3: Results from global orrelated �ts of the form (4.4) to the statiquark potentials. The seond olumn indiates the �t range in r and the lastolumn �2 per degree of freedom, �2=NDF.Having at hand an interpolation of the stati potential for eah �-value,we are able to determine the hadroni sale r0 in units of the lattie spaingthrough eq. (4.5). The value of  is hosen appropriate to the oarseness of thelattie and the �t range in r. In table 4.4 we list the �nal results and the errorstogether with the value of  from whih r0=a is alulated.� N� r0=a 3.400 4.81(3) 0.893.150 3.71(3) 1.652.927 4 2.93(1) 1.652.860 2.713(9) 1.652.680 3 2.205(3) 1.652.361 2 1.494(3) 4.00Table 4.4: Results for the hadroni sale r0=a from orrelated �ts of the form(4.4) to the stati quark-antiquark potentials. The last olumn indiates thevalue of  (f. table 4.1) from whih r0=a is determined through eq. (4.5).As mentioned in the introdution to this setion, the stati �qq-potential is animmediate, non-trivial and e�etive test of saling. Sine both the ratios r=r0and r0V are RG invariant, one expets the potentials expressed in terms of thehadroni sale as a funtion of r=r0 to lie on top of eah other after subtratingan unphysial onstant. This onstant in the potential is �xed through theonvention that V (r0) = 0 for eah potential. The resulting potential values aredisplayed in �gure 4.1. If we also plot the �ts to the potential values we observethat the urves an sarely be distinguished from eah other. Therefore we onlydraw one single urve (dashed line) obtained by a simultaneous �t to all the datarespeting the previously hosen �t ranges in r. The urve serves to guide theeye and shows the funtion (4.4) appropriately resaled and normalized.It is also useful to know how r0=a sales with �. Thene we parametrize the
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Figure 4.1: Saling of the stati �qq-potential V (r) expressed in terms of thehadroni sale r0. The unphysial onstant r0V (r0) has been subtrated foreah lattie spaing so that the urves all have the same value at r=r0 = 1. Thedashed line is drawn to guide the eye and shows a �t of the data to the funtion(4.4) appropriately resaled and normalized.



50 Chapter 4. Saling properties of the FP ationresults in terms of a smooth funtion of � in order to provide an interpolatingformula for r0=a at arbitrary values of � in the interval 2:361 � � � 3:4, therebyheking for the onset of asymptoti saling. The leading universal behaviour ofthe solution of the renormalization group equation for the bare oupling yieldsa=r0 = Ae�1=(2b0g20)(b0g20)�b1=(2b20)(1 +O(g20)); (4.11)where b0 = 11=(4�)2 and b1 = 102=(4�)4 are the universal one- and two-loopoeÆients in the perturbation expansion of the �-funtion and A is relatedto the �-parameter. O(g20) indiates non-universal ontributions from higherorder terms. Therefore, from the leading behaviour (a=r0) � exp(��=(12b0))with � = 6=g20, we infer a phenomenologial desription of ln(a=r0) in terms ofa polynomial, ln(a=r0) = pXk=0 ak(� � 3)k: (4.12)We obtain a good desription of the data already with p = 2 for whih we plotthe resulting urve together with the data points in �gure 4.2. The deviationsof the urve from the data is at least one order of magnitude smaller than thestatistial error. The parameters of the p = 2 and p = 3 polynomial are givenin table 4.5 and an diretly be ompared to analogous formulas for the Wilsonation [65, 64℄. Note the smallness of the higher order oeÆients in our �ts.p = 2 p = 3a0 -1.1539(18) -1.1536(31)a1 -1.0932(68) -1.0925(97)a2 0.132(11) 0.129(29)a3 -0.005(51)�2=NDF 0.20 0.29Table 4.5: Parameters of the phenomenologial desription of ln(a=r0) in termsof a polynomial of order p = 2 and p = 3, r0=a from table 4.4 as determinedfrom global �ts. p = 2 p = 3a0 -1.1622(24) -1.1615(34)a1 -1.0848(95) -1.082(13)a2 0.156(17) 0.146(39)a3 0.020(70)�2=NDF 1.31 1.92Table 4.6: Parameters of the phenomenologial desription of ln(a=r0) in termsof a polynomial of order p = 2 and p = 3 for the values of r0=a obtained fromloal �ts, table 4.9.When using the interpolating formula one should inlude a relative uner-tainty of 0:2% at � = 2:361 growing linearly to 0:6% at � = 3:40 and orre-sponding roughly to the statistial auray of the data6.6Note, that we did not take into aount the unertainty in the determinations of r0=a
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Figure 4.2: The measured data points of ln(a=r0) (irles) and their phenomeno-logial desription in terms of a polynomial quadrati in � (solid line). Theplotted points are the values of r0=a from the loal �ts.



52 Chapter 4. Saling properties of the FP ationLet us �nally draw the onlusion that the potential data measured with theFP ation shows exellent saling behaviour over the whole region of r=r0 andfor all values of � investigated. We also observe a smooth and nearly exponentialhange of the hadroni sale under variation of the gauge oupling. Of ourse,these statements are moderated by the fat that the potential itself does notpossess a lot of struture and, indeed, a nie saling of the potential is alsoobserved for the Wilson gauge ation, at least above �W � 6:0. Already a rudeand non-elaborated determination of r0=a is enough to observe nie salingbehaviour. Although the saling of the potential provides a �rst non-trivial testand a onsisteny hek for the FP ation, further tests are neessary.4.3 Saling of the ritial temperature and r0p�To further study the saling properties of the FP ation we examine renormal-ization group invariant ombinations of physial quantities like r0T, T=p�and r0p�. The �rst two are ombinations of two ompletely independentlydetermined quantities and therefore provide a highly non-trivial saling test ofthe FP ation and allow in priniple to quantify lattie artifats. In partiu-lar r0T provides a high preision saling test where the Wilson ation showssaling violations of the order of 4% at N� = 4, but already less than 1:5% atN� = 6. Therefore it requires a very preise determination of the referene saler0. The third ombination, r0p�, is made of two quantities whih are both al-ulated from the stati quark-antiquark potential and therefore are expeted tobe strongly orrelated. Nevertheless, sine the quantities are determined ratherindependently as we will see below, it still provides a non-trivial saling test.In this setion we present and disuss the results for the FP ation andompare them to results obtained from the Wilson ation and di�erent improvedations whenever it is possible. A omplete and detailed olletion of the dataobtained with the FP ation is given in appendix F.4.3.1 T=p�Let us �rst look at the ratio T=p�, the deon�ning temperature in terms ofthe string tension7. In �gure 4.3 we ompare the results from the FP ationwith data obtained from simulations with di�erent other ations.The range of N� -values for the alulations with the standard plaquette a-tion and the auray, with whih the string tension is determined, is impressiveand gives lear evidene for the ontinuum value of the deon�ning temperaturein units of the string tension. In table 4.7 we ollet all available ontinuum ex-trapolations together with the results for the FP ation. The data obtained withthe Wilson ation is taken from [49℄ where they use the T values at N� = 4and 6 from [47℄ and extrapolate �nite volume data for T at N� = 8 and 12from [47℄ to in�nite volume. For the value of p� they use the string tensionparametrization given in [65℄. The data for the 1� 2 tree level improved ationstemming from di�erent values of  in formula (4.5). This will be disussed in detail in setion4.3.2.7We do not laim that the quantity � is the string tension, but rather follow the atti-tude ommonly adopted in the literature whih denotes the quantity � obtained from 3 or 4parameter �ts to the stati potential as the string tension.



4.3. Saling of the ritial temperature and r0p� 53ation � T=p�FP ation 2.927 0.624(7)2.680 0.622(8)2.361 0.628(11)Wilson [49℄ 1 0.630(5)1� 2 [49℄ 1 0.634(8)DBW2 [68℄ 1 0.627(12)Iwasaki [42℄ 1 0.651(12)Bliss [69℄ 1 0.659(8)Table 4.7: Results of the deon�ning temperature in units of the string ten-sion obtained with the FP ation and ontinuum values from di�erent otherations. For ompleteness we also inlude the value by Bliss et al. [69℄ from atree level and tadpole improved ation. All ontinuum extrapolations are froma reanalysis by Teper [70℄.is again taken from [49℄. The data denoted by RG improved ation is obtainedwith the Iwasaki ation [71℄ and is taken from [42℄. Finally we also quote theresults from the QCD-TARO ollaboration [68℄ obtained with the DBW2 a-tion8. The extrapolation of the Wilson, the DBW2 and the Iwasaki data to theontinuum is from [70℄ where a areful reanalysis is done.Let us make the following remarks in order to judge the results. Sine forthe determination of the string tension one is interested in the long distanebehaviour of the potential one usually follows the strategy to �x the Coulomb-like term in the �t-ansatz9, i.e. to perform two-parameter �ts in aV0 and �a2only. In addition one inludes the o�-axis potential values and orrets fordistortion e�ets at short distanes due to missing rotational invariane eitherby inluding the e�ets of the tree level one-gluon exhange in the fore whenworking with the Wilson ation [62, 64℄ and by systematially inreasing thelower bound of the �tting range.In ontrast to this elaborated proedure we followed a muh simpler ap-proah. As desribed above we simply perform �ts to the on-axis potentialvalues only and therefore we are limited to small variations of the �tting range.Nevertheless, the values of � obtained in this way and quoted in table 4.3 arestable and vary only within their statistial errors over the whole set of sensiblyonsidered �t ranges. However, the error on � hanges onsiderably, i.e. up toa fator of 5, depending on whether distane r = 1 is taken into aount or not.Just to play safe we neglet distane r = 1 in the �ts, even if the �2 would allowit, to obtain the following onservative values10:These are the values whih are displayed in �gure 4.3 together with the dataas mentioned above. Our data is ompatible within one standard deviation withthe ontinuum extrapolation of the Wilson data and we observe saling of theFP ation within the statistial errors over the whole range of oarse lattiesonsidered orresponding to values of N� = 2; 3 and 4. Nevertheless, to make8DBW2 means "doubly bloked from Wilson in two oupling spae".9For large distanes the oeÆient of this term is expeted to be determined by stringutuations, � = ��=12.10The details of the orresponding �ts an be found in the appendix.



54 Chapter 4. Saling properties of the FP ationN� 4 3 2� 2.927 2.680 2.361�a2 0.161(3) 0.286(7) 0.634(22)T=p� 0.624(7) 0.622(8) 0.628(11)Table 4.8: Values for � and T=p�.a more rigorous statement and a more stringent hek of the saling of the FPation it is ertainly neessary to inlude o�-axis potential values in order tohek more reliably the stability of � under variation of the �t range.
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Figure 4.3: T=p� vs. 1=N2� for di�erent ations. See text for details.4.3.2 r0TAs was already pointed out by several authors [62, 65℄ there are learly draw-baks to using the string tension to set the sale. This is �rst of all due tothe fat that, sine the string tension is a long-distane quantity, one needs thepotential in a regime where the relative errors usually are getting large, andseondly, however less important for our purposes, the string tension is not wellde�ned in full QCD. To avoid these problems a new way to set the sale viathe fore between a heavy quark and antiquark was introdued [62℄ in order tode�ne an intermediate distane sale r0. This setion will therefore deal withthe RG invariant quantity r0T, so as to provide a high preision saling test ofthe FP ation and to size the remaining lattie artifats.



4.3. Saling of the ritial temperature and r0p� 55Unfortunately, preise determination of r0=a is missing in the literature ex-ept for the Wilson ation [65, 64℄ and, unlike to T=p�, we are not able toompare our data to other ations suh as the Iwasaki, DBW2 or the 1 � 2tree level improved ation. Indeed, the determination of r0=a is a deliate issueand systemati e�ets due to di�erent methods of alulating the fore an besizeable. Due to the fat that extrating the derivative of the potential from adisrete set of points is not unique, the intrinsi systemati unertainty is notnegligible at intermediate and oarse lattie spaings a � 0:15 fm. For example,in an aurate sale determination of the Wilson gauge ation in [65℄ the authorsquote a value of r0=a = 2:990(24) at �W = 5:7. This is to be ompared withthe preision omputation of the sale with the same ation in [64℄ where theauthors obtain r0=a = 2:922(9) at the same �-value. In view of the laim in [65℄to have inluded all systemati errors and the high relative auray (� 0:3%)of the data in [64℄, this systemati di�erene on the 2 � 3% level is a seriousmatter. Even on �ne latties there are large disrepanies: at �W = 6:2 theauthors of [64℄ obtain r0=a = 7:38(3), while in [72℄ a value of r0=a = 7:29(4) isquoted.In that sense our results onerning r0T have to be taken with great are.Although our determination of r0=a as desribed in setion 4.2.4 yields niesaling behaviour of the potential and exellent asymptoti saling behaviourof r0=a itself, this is rather a proof of our ability to onsistently and systemat-ially extrat the sale for all simulations performed. For the use of r0=a as aquantity to test and ompare saling violations in r0T we need a more auratedetermination of r0=a as is aessible to us at the moment.Nevertheless, we try to follow the proedure proposed in [62, 64℄ as lose aspossible. First we perform orrelated �ts of the orrelation matrix elements tothe form Z(r) expf�(V0 + �=r + �r)tg as desribed in setion 4.2.4, but onlyloally, i.e. using data between some rmin and rmax lose to r. Then thefore is interpolated to arbitrary values of r from these loal �ts and �nallyr=a (and aordingly r0=a) is determined from the relation (4.5). In order toestimate the systemati errors we alulate r0=a from di�erent small �t rangesand, orrespondingly, di�erent values of  from table 4.1. Then the resultsare ombined with a weight depending on the error of the quantity11. The�nal results for r0=a are listed in table 4.9 where the �rst error denotes thestatistial error. The seond is the estimate of the systemati error and marksthe minimal and maximal value of r0=a obtained with di�erent �t ranges anddi�erent reasonably hosen values of . The systemati error stemming fromdi�erent determinations of the potential values is not taken into aount. Forlater referene we also determined r0=a for � = 3:40; 3:15 and � = 2:86. Intable 4.10 we ollet the data for r0T from our measurements with the FPation together with the data from measurements with the Wilson ation foromparison. The ritial ouplings orresponding to N� = 4; 6; 8 and 12 aretaken from [49℄ while the values for r0=a are from the interpolating formula in[64℄. The quoted errors are purely statistial. The ontinuum value is our ownextrapolation obtained by performing a �t linear in the leading orretion term1=N2� . The data point at N� = 4 was disarded from the �t. Finally, the valuesare plotted in �gure 4.4 for omparison.11In addition one ould also take into aount the �2-value of the orresponding �t as isdone in [65℄.
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Figure 4.4: r0T vs. 1=N2� for the Wilson and the FP ation. The empty irlesrepresent data from measurements with the Wilson ation and the �lled squaresdenote the results obtained with the FP ation.



4.3. Saling of the ritial temperature and r0p� 57� r0=a3.400 4:833(39)(+18�22 )3.150 3:717(23)(+19�50 )2.927 2:969(14)( +5�14 )2.860 2:740(10)(+17�31 )2.680 2:237(7)(+11�33 )2.361 1:500(5)(+29�14 )Table 4.9: The hadroni sale r0=a determined from loal �ts to the potential.The �rst error denotes the statistial error and the seond is the estimate of thesystemati error. The results for � = 3:40; 3:15 and � = 2:86 are quoted forlater referene. N� Wilson ation FP ation2 0.750(3)3 0.746(3)4 0.719(2) 0.742(4)6 0.739(3)8 0.745(3)12 0.746(4)1 0.750(5)Table 4.10: Results for the ritial temperature in terms of the hadroni sale,r0T, from measurements with the Wilson ation and the FP ation.The Wilson ation shows saling violation for r0T of about 4% at N� = 4,while atN� = 6 it is already smaller than about 1:5%. In that sense this quantityprovides a high preision saling test and thus a very aurate omputation ofthe low-energy referene sale r0=a on the 0:5% level is of ruial importane.The lak of data for di�erent ations is an indiation that this is indeed a diÆulttask. Although the required statistis is in priniple aessible to us, we donot have full ontrol over the systemati ambiguities in the alulation of r0=aon the required auray level. Nevertheless we observe in priniple exellentsaling within 1% or two standard deviations for the FP ation even on oarselatties orresponding to N� = 3 and 2, however, this statement is moderated inview of the large systemati unertainties. The systemati e�ets are generatedby di�erent methods of extrating the potential values, di�erent proedures ofinterpolating and alulating the fore, di�erent hoies of �t ranges et.One way around the aveat is to repeat the same measurements and exatlythe same analysis independently for measurements with the Wilson ation inorder to rule out these systemati e�ets and to reliably detet and to omparesaling violations for both ations. In any ase further studies on the deter-mination of r0=a are learly neessary in order to fully gain ontrol over allpossible soures of systemati errors. Unfortunately this is beyond the sope ofthe present work.



58 Chapter 4. Saling properties of the FP ation4.3.3 r0p�As a byprodut of the analysis in the previous two setions we an now lookat another RG invariant produt, namely r0p�. This quantity is not aessiblefrom the global �ts to the potential performed in setion 4.2.4 sine then p�aand r0=a are determined from the same desription or parametrization of thepotential data and thus are strongly orrelated. This is no longer the ase afterthe previous analysis, where � is determined from the long range properties ofthe potential while r0 is alulated from loal �ts only where the preise formof the �tting ansatz is irrelevant.In table 4.11 we have olleted the resulting values of r0p� when r0=a istaken from table 4.9 and �a2 from table 4.8. We also list the results fromthe potential measurements at the three additional �-values � = 2:86; 3:15 and3.40. We an extrapolate to the ontinuum either by performing a �t linearin (a=r0)2 or by �tting a onstant in order to obtain r0p� = 1:193(10) andr0p� = 1:193(6), respetively. For omparison we alulated the data for theWilson ation from the interpolating formula for r0=a in [64℄ and the stringtension parametrization in [65℄. The ontinuum extrapolation for the Wilsondata is from the analysis of Teper in [70℄.� r0p�FP ation2.361 1.194(21)2.680 1.196(15)2.860 1.190(23)2.927 1.191(12)3.150 1.185(16)3.400 1.198(12)1 1.193(10)Wilson ation5.6925 1.148(12)5.8941 1.170(19)6.0624 1.183(13)6.3380 1.185(11)1 1.197(11)Table 4.11: r0p� for the Wilson and the FP ation.Figure 4.5 shows the saling behaviour of r0p� for the Wilson ation (emptyirles) and the FP ation (�lled squares) as a funtion of (a=r0)2. The errorbars are purely statistial and are dominated by the unertainty from the stringtension. Therefore the systemati ambiguities possibly present in r0=a are notvisible within the shown error bars.The Wilson ation shows a saling violation of about 4% at � = 5:6925(N� =4), while no saling violation is seen for the FP ation even on latties as oarseas � = 2:361(N� = 2). We would like to emphasize again that this is a non-trivial result, sine r0=a and p�a are determined ompletely independent ofeah other. However, with the data presently available to us it is diÆult toextrat the string tension with the auray needed to see a striking di�erene



4.4. Conlusions and outlook 59to the Wilson ation for �-values orresponding to N� � 4. This is mainly dueto the lak of measurements of the o�-diagonal potential values.
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Figure 4.5: Saling behaviour of r0p� for the Wilson ation (empty irles) andthe FP ation (�lled squares). The sale on the x-axis is hosen for onveniene.4.4 Conlusions and outlookIn this hapter the parametrized FP ation was subjeted to several saling tests.By means of the stati quark-antiquark potential and the saling of r0T; T=p�and r0p� we have assured that the ation behaves well and shows no irregu-larities over the whole range of studied lattie spaings. In all quantities underinvestigation we observe exellent saling within the standard errors or 2 % evenon latties as oarse as a ' 0:2� 0:3 fm.One important outome of the studies in this hapter is, that the hadronisale r0=a introdued by Sommer [62℄ and pursued by [64℄ is not appropriatefor lattie spaings larger than around a ' 0:1 fm. The intention of the authorsto have a new way of setting the sale in a onsistent way without introduingadditional lattie artifats is ertainly appreiable. However, the sale inorpo-rates large systemati ambiguities depending heavily on the tehniques used forextrating it. This makes it nearly impossible to ompare the results of di�erentgroups reliably using r0=a at latties spaings around a ' 0:1 fm. In this regimeit seems more preferable to use the e�etive string tension � to set the sale.Regarding our alulations it would be desirable to measure the e�etivestring tension using o�-axis potentials in the future. As was already pointed out,



60 Chapter 4. Saling properties of the FP ationthis would allow a more reliable determination of the physial sale, espeiallyon oarse latties. In addition, one ould determine the potential gap � alongthe lines in [64℄ and hek the saling behaviour of r0�jr0 . This quantity showslattie artifats as large as 20% at �W = 5:8 and 12% at �W = 5:95.



Chapter 5Glueballs5.1 IntrodutionThe rih struture in the hadron spetrum of QCD is expeted to reveal boundstates onsisting of (mainly) gluons, so alled glueballs. Unfortunately, al-ulating the properties of suh states diretly from �rst priniples using theQCD lagrangian proves to be a diÆult task and standard perturbative meth-ods fail. One possibility is provided by numerial omputations using lattieQCD and, indeed, glueball masses were among the �rst quantities to be alu-lated on the lattie. Most of these alulations have been done in the quenhedapproximation1, mainly beause glueballs are the atual exitations in the puregauge setor. There also exist studies of e�ets from dynamial sea quarks andglueball-meson mixing on the glueball spetrum from the SESAM and T�L ol-laborations [72, 74, 75℄ and from the UKQCD ollaboration [76℄, however, theresults are not yet onlusive [75℄.On the experimental side there is some evidene found in several experimentsfor the existene of exoti glueballs or hybrid partiles onsisting of quarks withgluoni exitations. The exoti glueballs, sometimes alled "oddballs", have ex-oti quantum numbers, e.g. 0+�; 1�+, and are partiularly interesting in lattiegauge theory beause they an not mix with onventional meson states. Perontra, the glueballs with the lowest masses have onventional quantum num-bers. They are sitting in a dense bakground of onventional meson states andit is thene diÆult to distinguish them in an experiment. For further detailson the experimental aspet of the glueball spetrum and possible glueball an-didates we refer to a reent artile [77℄ reviewing the light meson spetrum.The main obstale in the omputations of glueball masses on the lattie isthe fast deay of the signal in the orrelation funtions of the gluoni exitations,due to the fat that the glueball masses are relatively large (mG � 1:6 GeV). Itturns out to be notoriously diÆult to extrat the glueball masses before the sig-nal disappears in the relatively large noise of the measured orrelation funtionsand thus a small lattie spaing a is required to follow the signal long enough.On the other hand, the physial lattie volume should be larger than L � 1:21For omprehensive reviews of suh alulations see [70℄ and [73℄.61



62 Chapter 5. Glueballsfm to avoid �nite size e�ets. This �nally results in a large L=a making it hardto obtain the statistis whih is usually required. One possible way around theaveat is the use of anisotropi lattie ations whih have a �ner resolution intime diretion, a� � a� , and thene allow to follow the signal over a largerrange of time slies. Although this idea is not new [78℄, it has been revived onlyreently by Morningstar and Peardon [79, 80℄. Using an anisotropi improvedlattie ation they investigated the glueball spetrum below 4 GeV in the pureSU(3) gauge theory and improved the determinations of the glueball massesonsiderably ompared to previous Wilson ation alulations. Reent Wilsonation alulations omprehend works by the UKQCD ollaboration [81℄ andthe GF11 group [82, 83℄. It an be said that all three alulations are in rea-sonable agreement on the masses of the two lowest lying 0++ and 2++ glueballs.Despite this agreement Wilson ation alulations of the 0++ glueball mass,however, show huge lattie artifats of around 40 % at oarse lattie spaingsa ' 0:15 fm and still 20 % even at modest lattie spaings a ' 0:10 fm. Fromthis point of view the 0++ glueball mass is partiularly interesting, besidesits physial relevane, sine it provides an exellent test objet on whih thesaling behavior of di�erent ations an be heked and the ahieved redutionof disretization errors an be sized. In this sense let us emphasize that ourintention here is twofold: �rstly, our alulation provides a new and independentdetermination of glueball masses using FP ations, and seondly, we aim at usingthe glueball spetrum, in partiular the mass of the 0++ glueball, as anothersaling test of the FP ation. Although we observe that the FP ation sales wellin quantities like r0T; T=p� or r0p�, lattie artifats ould be, in priniple,quite di�erent in other physial quantities, in partiular r0mG or mG=p�.A systemati determination of the glueball spetrum is of ourse muh moreinvolved. For example it requires a areful di�erentiation of the single glueballstate from two-glueball and torelon-pair states having zero total momentum.The latter an rather easily be identi�ed through a �nite size saling study,sine the torelon mass is strongly dependent on the lattie volume. In addition,suh a study is needed to measure the systemati e�ets inherited in the resultsfrom �nite volume. Finally, after performing the ontinuum extrapolation onehas to reliably identify the ontinuum spin ontent of eah energy level. Suh asystemati study is of ourse beyond the sope of the present work.This hapter is organized as follows. In setion 5.2 we �rst desribe theonstrution of glueball operators from Wilson loops. This involves some grouptheory and provides a nie and pedagogial appliation of representation theory.In setion 5.3 we desribe the details of the simulations inluding the generationof the gauge �eld on�gurations and the measurements of the operators. Theextration of masses from the Monte Carlo estimates of glueball orrelationfuntions are presented in setion 5.4 together with a disussion of the saling.Finally, the main results are summarized in setion 5.5.5.2 Glueball operators from Wilson loopsIn this setion we desribe the onstrution of the operators measured in theglueball simulations. We �rst review the haraterization of glueball states a-



5.2. Glueball operators from Wilson loops 63ording to their transformation properties under irreduible representations ofthe rotation group following losely [84℄ and [85℄. Then we present the onstru-tion of basis funtions of irreduible representations in general and later speifyto operators transforming under the ubi group Oh. Some properties of theubi point group are summarized in appendix E.5.2.1 Glueball statesPhysial states in the Hilbert spae of lattie gauge theory are gauge invariantand they an be obtained by applying gauge invariant operators to the puregauge vauum. Of partiular interest in our simulations are spae-like Wilsonloops in the fundamental representation of SU(3). Sine we are aiming forthe determination of masses of glueball states, we are only onsidering zero-momentum states, i.e. translationally-invariant operators.In the ontinuum limit the Hamiltonian is rotationally invariant and itseigenstates an be haraterized aording to the unitary representations of thegroup SU(2) in general, and to those of the three-dimensional rotation groupSO(3) for bosoni states in partiular. In addition the Hamiltonian is invariantunder parity and harge onjugation, and therefore the states an further belassi�ed aording to having eigenvalues P = �1 under parity and C = �1under harge-onjugation parity, respetively. Thus we may label the eigenstatesof the Hamiltonian orresponding to glueball states with de�nite mass by j i =jJPCi, where J denotes the spin of the orresponding irreduible representationDJ of the rotation group.For �nite values of � we work on a hyperubi lattie and ontinuous ro-tation symmetry is broken down to exat ubi symmetry. On the lattie therole of the Hamiltonian is adopted by the transfer matrix. Thene we are nowonsidering eigenstates of the transfer matrix, whih belong to an irreduiblerepresentation of the ubi group O. Sine the ubi group is a subgroup ofSO(3), any representation DJ indues a representation on the group O, theso-alled subdued representation DOJ . In general, the subdued representa-tion is no longer irreduible and an thus be deomposed into the irreduiblerepresentations �p of the ubi group O,DOJ = �1 � �2 � : : : : (5.1)In table 5.1 we list for onveniene the subdued representations of the rota-tion group up to J = 6. The labeling of the irreduible representations of theubi group follows the standard notation, where one-dimensional representa-tions are denoted by A, two-dimensional irreduible representations by E andthree-dimensional irreduible representations by T .As a onsequene of this deomposition the quintuplet of degenerate statesof a spin J = 2 partile in the ontinuum for example will be split up by thelattie regularization into a doublet and a triplet transforming under E and T2,respetively. The mass splitting between the two representations will disappearas we approah the ontinuum limit and full rotation symmetry is restored.On the other hand, every state in the lattie theory transforming aordingto an irreduible representation �p of the ubi group an be expanded in theontinuum limit into eigenstates of spin J ,j�pi =XJ �pJ jJi: (5.2)



64 Chapter 5. Glueballs�p J = 0 1 2 3 4 5 6A1 1 0 0 0 1 0 1A2 0 0 0 1 0 0 1E 0 0 1 0 1 1 1T1 0 1 0 1 1 2 1T2 0 0 1 1 1 1 2Table 5.1: Subdued representations of the rotation group up to J = 6. Givenare the multipliities with whih the representation �p an be found in thesubdued representation DOJ . The labeling of the irreduible representations isexplained in the text.However, spin J an ontribute to this superposition only if �p is ontained inDOJ . Usually, the lowest spin ontained in �p belongs to the lowest mass. Nev-ertheless, a unique identi�ation of glueball states on the lattie with ontinuumspin states is possible only suÆiently lose to the ontinuum limit when di�er-ent representations in a given olumn of table 5.1 beome (nearly) degenerate.5.2.2 Constrution of basis funtions of irreduible repre-sentationsIn this setion we desribe the general proedure for onstruting basis funtionsof irreduible representations. This involves the harater projetion operatorde�ned by Pp = dpg XT�G �p(T )�P (T ); (5.3)where p labels the irreduible representations �p of dimension dp of a �nite groupof oordinate transformations G of order g, �p(T ) being the harater of T�Gin �p and P (T ) the unitary operator in the Hilbert spae L2 of the oordinatetransformation T�G.Pp has the property of projeting out of a funtion � �L2 the sum of all theparts transforming under �p. Having hosen a (normalizable) � suh that Pp�is not identially zero, we onstrut P (T )(Pp�) for eah T�G. Eah of theseare linear ombinations of the dp basis funtions of �p. From these funtionswe abstrat dp linearly independent funtions and apply the Gram-Shmidt or-thogonalization to obtain a set of orthonormal basis funtions of the irreduiblerepresentation.In pratie, given a non-zero Pp�, we onstrut Pi P (Ti)(Pp�), wherePi P (Ti) is an appropriately hosen linear ombination of the unitary oor-dinate transformation operators. Then from this �rst basis funtion all othersare generated by applying appropriate rotation operators2. This proedure en-sures that eah set of basis funtions obtained from di�erent funtions �i �L2transform exatly in the same way under a given irreduible representation �p.2For details see setion E.3 in the appendix.



5.2. Glueball operators from Wilson loops 655.2.3 Irreduible representations of the ubi group onWilson loopsIn this setion we onstrut the irreduible representations of the ubi groupOh on spae-like Wilson loops up to length eight. To make the onnetion tothe onstrution presented before, let us note that the Wilson loops ating onthe vauum state take over the role of the funtion � in the Hilbert spae L2 asintrodued in the previous setion3.All prototypes of Wilson loop shapes up to length eight are displayed in�gure 5.1. Eah of these shapes is haraterized by an L-tuple desribing thepath of the orresponding loop,(f̂1; : : : ; f̂L) with LXi=1 f̂i = 0; (5.4)where the f̂i are unit vetors orresponding to the spae-like oordinates. By[f̂1; : : : ; f̂L℄ we denote the equivalene lass of L-tuples whih are idential upto yli permutations. Under C-parity we simply haveC[f̂1; : : : ; f̂L℄ = [�f̂L;�f̂L�1; : : : ;�f̂1℄; (5.5)and the ombinations[f̂1; : : : ; f̂L℄� = [f̂1; : : : ; f̂L℄� [�f̂L; : : : ;�f̂1℄ (5.6)are even and odd under the C-parity transformation, respetively. This or-responds to taking the real or the imaginary part of the Wilson loop underonsideration.A (reduible) representationM of Oh on operators of a given �xed shape isnow de�ned throughMg [f̂1; : : : ; f̂L℄� := [Mgf̂1; : : : ;Mgf̂L℄�; 8 g�Oh; (5.7)whereMg is the matrix orresponding to the group element g in the fundamentalrepresentation. The representationM has dimension d, where d is the numberof di�erent spatial orientations of the given shape. In table 5.2 we have listedthe dimensions of the generated representations inluding C-parity on everyloop shape.loop shape # 1 2 3 4 5 6 7 8 9 10 11dimension d 6 12 24 8 6 24 24 96 48 12 48loop shape # 12 13 14 15 16 17 18 19 20 21 22dimension d 24 12 24 6 12 12 48 12 48 24 96Table 5.2: Dimension d of the representation of Oh �C on the loop shapes, i.e.the number of di�erent orientations.3In partiular we have �[U ℄ = W [U ℄�va[U ℄, where W [U ℄ is a Wilson loop built from gaugelinks U and �va[U ℄ is the vauum state invariant under appliations of the transfer matrix.The symmetry properties of �[U ℄ are then haraterized by those of the Wilson loops W [U ℄.
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#21 #22Figure 5.1: Prototypes of spae-like Wilson loop shapes up to length 8.



5.2. Glueball operators from Wilson loops 67The irreduible ontents of the representation M are determined by meansof the harater relation (E.5). In pratie we �rst onstrut a matrix represen-tative in eah onjugay lass C for every representationM with �xed C-parityand from this its harater �(C) in this representation by taking the trae. Themultipliity nP of the irreduible representation �p in � = M are then alu-lated by np = 148XC nC�(C)�p(C); (5.8)where �p(C) an be read from table E.2 and nC is the number of elements inthe onjugay lass C. The results are listed in table 5.3 and 5.4.shape A++1 A++2 E++ T++1 T++2 A�+1 A�+2 E�+ T�+1 T�+2#1 1 0 1 0 0 0 0 0 0 0#2 1 1 2 0 0 0 0 0 0 0#3 1 0 1 0 1 0 0 0 1 1#4 1 0 0 0 1 0 0 0 0 0#5 1 0 1 0 0 0 0 0 0 0#6 1 0 1 0 1 0 0 0 1 1#7 1 0 1 0 1 0 0 0 1 1#8 1 1 2 3 3 1 1 2 3 3#9 1 0 1 1 2 1 0 1 1 2#10 1 1 2 0 0 0 0 0 0 0#11 1 1 2 1 1 0 0 0 2 2#12 1 1 2 1 1 0 0 0 0 0#13 1 0 1 0 0 0 0 0 0 1#14 1 0 1 1 2 0 0 0 0 0#15 1 0 1 0 0 0 0 0 0 0#16 1 1 2 0 0 0 0 0 0 0#17 1 0 1 0 1 0 0 0 0 0#18 1 0 1 1 2 1 0 1 1 2#19 1 0 1 0 1 0 0 0 0 0#20 1 0 1 1 2 1 0 1 1 2#21 1 0 1 0 1 0 0 0 1 1#22 1 1 2 3 3 1 1 2 3 3Table 5.3: Irreduible ontents of the C-parity plus representations of the sym-metry group of the ube on Wilson loops up to length eight.The orthogonal wave funtions of the irreduible operators whih an bebuilt from Wilson loops up to length eight are listed in appendix E.3 in thetables on page 107 { 113. Note that the expressions for loop shape #8, 9, 11,18, 20 and 22 are too lengthy and an thus not be displayed.
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shape A+�1 A+�2 E+� T+�1 T+�2 A��1 A��2 E�� T��1 T��2#1 0 0 0 1 0 0 0 0 0 0#2 0 0 0 1 1 0 0 0 0 0#3 0 0 0 1 1 1 0 1 0 1#4 0 1 0 1 0 0 0 0 0 0#5 0 0 0 1 0 0 0 0 0 0#6 0 0 0 1 1 1 0 1 0 1#7 0 1 1 1 0 0 0 0 1 1#8 1 1 2 3 3 1 1 2 3 3#9 0 1 1 2 1 0 1 1 2 1#10 0 0 0 1 1 0 0 0 0 0#11 0 0 0 2 2 1 1 2 1 1#12 0 0 0 2 2 0 0 0 0 0#13 0 0 0 1 0 0 1 1 0 0#14 0 1 1 2 1 0 0 0 0 0#15 0 0 0 1 0 0 0 0 0 0#16 0 0 0 0 0 0 0 0 1 1#17 0 0 0 0 0 0 0 0 1 1#18 0 1 1 2 1 0 1 1 2 1#19 0 1 1 1 0 0 0 0 0 0#20 1 0 1 1 2 1 0 1 1 2#21 0 0 0 1 1 0 1 1 1 0#22 1 1 2 3 3 1 1 2 3 3Table 5.4: Irreduible ontents of the C-parity minus representations of thesymmetry group of the ube on Wilson loops up to length eight.



5.3. Simulation details 695.3 Simulation detailsWe performed simulations at three di�erent lattie spaings in the range 0:1 fm �a � 0:18 fm and volumes between 1.4 fm and 1.8 fm. The simulation parame-ters for the di�erent runs are given in table 5.5, where we list the values of theouplings, the lattie sizes and the relevant numbers for the obtained statistis.We also give our estimates of the hadroni sale r0=a and the orrespondingapproximate lattie spaings in units of fermi for onveniene.� lattie a[fm℄ r0=a # bins bin size meas./bin3.40 144 0.10 4.833(39) 206 420 703.40 144 0.10 4.833(39) 152 200 503.15 124 0.13 3.717(23) 202 500 502.86 104 0.18 2.740(10) 160 200 50Table 5.5: Run parameters of the glueball simulations. Values for the ou-pling �, the lattie size and the obtained statistis are listed. The estimate ofthe hadroni sale r0 in terms of the lattie spaing a is given as well as theapproximate lattie spaing in units of Fermi.The gauge �eld on�gurations were updated by performing a ompoundsweep onsisting of one over-relaxation sweep and one standard Metropolissweep.We �rst performed two "small" preliminary simulations at � = 3:40 and� = 2:86. After eah ompound sweep we measured �ve di�erent loop shapes,#6; 8; 11; 14; 22, on �ve smearing levels Sn; n = 2; 4; : : : ; 10 with smearing pa-rameter4 �s = 0:2 and subsequently projeted into the A++1 -hannel.In the two large simulations we measured all 22 Wilson loop shapes on thesame smearing levels as before (Sn; n = 2; 4; : : : ; 10;�s = 0:2) and projetedthem into all 20 irreduible glueball hannels. Measurements were taken afterthree and �ve ompound sweeps at � = 3:40 and � = 3:15, respetively.The projetions of the loop shapes into the di�erent hannels were done a-ording to the desription in setion 5.2. Then the orrelator matrix elementswere onstruted from the projeted operators and Monte Carlo estimates wereobtained by averaging the measurements in eah bin. During a simulation runwe measure all possible 'polarizations' in a given hannel and ollet them to-gether on the level of the orrelation matrix. This will eventually suppress thestatistial noise by a fator of the dimension of the representation, if the dif-ferent polarizations are anti-orrelated. Finally, the resulting large orrelationmatries from eah bin were stored for later analysis. Of ourse the smearingand in partiular the measurements of the loops takes a onsiderable part ofthe simulation time and an in priniple be redued by onsidering only a smallnumber of shapes. On the other hand one is interested in having as large aspossible the set of operators for onstruting the wave funtion of the groundstate. In addition, having measured all loop shapes up to length eight in thetwo larger simulations allows us to identify the important loop shapes for futuresimulations. However, only a moderate amount of work has been devoted tothis kind of analysis up to now, f. setion 5.4.2.4For details of the smearing we refer to setion 4.2.3.



70 Chapter 5. GlueballsFor the extration of the glueball masses one has to onsider vauum-sub-trated operators. For this purpose we also measured and stored the expetationvalues of all the operators in eah bin. Vauum subtration is required only inthe A++1 -hannel sine it has the same quantum numbers as the vauum. Allother hannels have a vanishing vauum expetation value, thereby yielding ahek for the orret onstrution of operators in eah of the hannels. Weinvestigated di�erent methods of removing the vauum expetation value and,�nally, followed a strategy whih is outlined in the next setion amongst otherdetails of the analysis.5.4 Analysis detailsIn the �nal analysis phase for extrating the glueball masses we resort to thevariational tehniques desribed in setion D.1 and D.2. Although the proedureis straightforward in general, let us put some remarks whih are related to theanalysis of the glueball masses in partiular.In a given symmetry hannel we have to �nd a linear ombination of the basioperators whih overlaps best with the wave funtion of the ground state and,if neessary, of the next few exites states. This an be ahieved by hoosingthe linear ombination whih minimizes the e�etive mass on a given time slieat t0 and amounts to solving the generalized eigenvalue equationC(t1)v = e�E(t1�t0)C(t0)v: (5.9)This, however, requires a positive de�nite C(t0), whih in general is not ful�lledfor t0 � 1 due to statistial errors. In partiular the large number of opera-tors measured in the glueball simulations yield a few very small or even slightlynegative eigenvalues of C(t0) with large relative errors. This is due to the fatthat some of the operators are strongly orrelated and therefore not linearlyindependent on the given MC sample, but an be avoided by �rst diagonalizingand then projeting and trunating C(t0) to an appropriate subspae of oper-ators as desribed in setion D.1. However, the large statistial noise in someof the operators an even spoil the diagonalization of C(t0) in suh a way thatremnants of the unphysial modes are still present even after the trunation toa smaller operator basis.Therefore we hoose right from the beginning a set of operators whih weonsider to be well measured (f. setion 5.4.2). On this set the whole proedureis numerially stable and well de�ned. Nevertheless, the hoie of operators isarbitrary to some extent and an optimized hoie will presumably improve thestability of the analysis. It would be most interesting and rather easy to inves-tigate for example the overlap of eah of the operators with the ground state.First steps in this diretion are already undertaken, but it requires further work.Another remark onerns the vauum subtration neessary in the A++1 -hannel. To obtain vauum-subtrated operators one usually onsiders�sub.(�) = �(�) � h0j�(�)j0i. However, we follow a di�erent strategy and treatthe vauum as an additional state arrying zero energy. As it turns out the va-uum state an be determined with very high auray and it is safe to onsideronly the operator basis orthogonal to the vauum in the �tting proedure. For



5.4. Analysis details 71this purpose we ut out the vauum state obtained from solving the generalizedeigenvalue equation (5.9), i.e. we only onsider the orrelation matrix5CKij (t) = (vi; CM (t)vj); (5.10)with i; j running from i; j = 2; : : : ;K �M in the further analysis. In our experi-ene this strategy yields the most stable subtration of the vauum ontributionwith respet to the statistial utuations of the subtrated operators.In the last step for extrating the glueball masses the large orrelation ma-tries are trunated down to a 1 � 1 or 2 � 2 matrix whih is subsequently�tted in the �t range tmin : : : tmax taking both temporal orrelations and or-relations among the operators into aount. The hoie of tmax is not ruialand is usually taken aording to the relative error of the matrix elements underonsideration and the �2-funtion. More important is the orret hoie of tmin.Sine exited glueball masses are rather high we do not expet large ontamina-tion of the ground state orrelators from exited states even on time slie t = 1and therefore tmin = 1 was usually hosen. In partiular this hoie is safe if we�x t0 = 1 and t1 = 2 rather than t0 = 0 and t1 = 1. Indeed, in the former asethe �2-funtion remains more stable when we inrease tmin = 1 to tmin = 2 as ahek for the onsisteny in the extrated values for the masses. As an exampletake the results in table F.6 for the A++1 -hannel at � = 2:86, where we observea large shift in the �tted mass for the hoie t0 = 0 and t1 = 1 while no hangeis seen for the hoie t0 = 1 and t1 = 2 when tmin is inreased from 1 to 2.One remark is in order onerning the mass estimate in the A++1 -hannel ofthe � = 3:15 simulation. There we observe a systemati di�erene of the massestimate depending on whether tmin = 1 or 2 and lying signi�antly outsidethe statistial error of the usually hosen tmin = 1 value. In order to take thissystemati shift into aount we alulate an average of the two highlightedvalues in table F.5 taking their errors as a measure of the weight. To be on thesafe side the �nal error is just the simple average of the two errors and oversboth signi�antly di�erent values within one standard deviation.5.4.1 ResultsThe results of the �ts to the glueball orrelators are olleted in the appendix intables F.3 { F.6 where we list the values of t0 and t1, the number of operators,Nop, kept after the trunation in C(t0), the �t range tmin : : : tmax, the �2 perdegree of freedom, �2=NDF, and the mass estimate. All temporal orrelationsand orrelations among the operators are taken into aount by performingorrelated �ts as desribed in setion D.2. The ovariane matrix is alulatedfrom Jakknife samples and the error is estimated using a Jakknife proedure.We inlude the results of di�erent �ts in the tables in order to give an impressionon the stability of the �ts. In eah hannel the result highlighted in boldfae isour �nal hoie and represents a most reasonable mass estimate for the givenhannel. These �nal mass estimates are olleted in table 5.6 for onveniene.To ompare these values it is onvenient to use r0 to set the sale. In table5.7 we list our estimates of the glueball masses expressed in terms of r0, while�gure 5.2 and 5.3 show our values for the A++1 - and the E++; T++2 -hannel,respetively, together with results from di�erent alulations with the Wilson5See setion D.1 for notations.



72 Chapter 5. Glueballs� = 2:86 � = 3:15 � = 3:40 � = 3:40A++1 1.411(96) 1.054(56) 0.831(33) 0.836(23)E++ 1.534(62) 1.233(48)T++2 1.609(55) 1.234(28)A�+1 1.65(18) 1.395(86)E�+ 1.97(20) 1.681(72)T�+2 1.92(11) 1.631(72)T+�1 2.10(18) 1.64(16)Table 5.6: Final glueball mass estimates in terms of the lattie spaing, amG.ation (rosses) and the alulation of Morningstar and Peardon with a treelevel/tadpole improved anisotropi ation (empty irles).J � = 2:86 � = 3:15 � = 3:40 � = 3:40A++1 0 3.87(27) 3.92(23) 4.02(16) 4.04(12)E++ 2 5.70(23) 5.96(24)T++2 2 5.98(21) 5.96(14)A�+1 0 6.13(67) 6.74(42)E�+ 2 7.32(74) 8.12(35)T�+2 2 7.14(41) 7.88(35)T+�1 1 7.81(67) 7.93(78)Table 5.7: Final glueball mass estimates in terms of r0, r0mG. The ontinuumspin interpretation of eah hannel is given for onveniene.It is interesting to ompare our results with the ontinuum values from var-ious ollaborations. For this purpose we resort to [86℄ where the results of refs.[70, 81, 83℄ have been expressed or onverted in units of r0 using the interpolat-ing formula for the Wilson ation [64℄ and, whenever neessary, the ontinuumextrapolation has been redone. The �nal results are listed in table 5.8. Our on-tinuum result is an extrapolation to the ontinuum using a �t funtion linear in(a=r0)2, whih amounts tor0m0++ = 4:12(21)� (2:1� 3:1)� ar0�2 : (5.11)The �2 per degree of freedom of the �t is �2=NDF = 0:07. The data in theother hannels is too little to be extrapolated to the ontinuum and we simplyquote the masses obtained on the �nest lattie (a = 0:10 fm) in brakets. Itis interesting to ompare our results with the ontinuum values from the othergroups listed in table 5.9. Note in partiular our values for the degenerate 2++state, E++ and T++2 , whih agree very well with the ontinuum values of othergroups. We observe restoration of the degeneray in the 2++ and 2�+ hannelwithin the statistial errors.
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Figure 5.2: Glueball mass estimates for the A++1 hannel. Results from simula-tions of the Wilson ation (rosses) and a tree level/tadpole improved anisotropiation (empty irles) are shown together with the results obtained with the FPation (�lled irles).Collab. r0m0++ r0m2++ yearM&P [80℄ 4.21(11)(4) 5.85(2)(6) 1999GF11 [83℄ 4.33(10) 6.04(18) 1999Teper [70℄ 4.35(11) 6.18(21) 1998UKQCD [81℄ 4.05(16) 5.84(18) 1993FP ation 4.12(21) [5.96(24)℄ 2000Table 5.8: Comparison of the two lowest glueball masses in units of r0. The2++ value is not extrapolated to the ontinuum but denotes the mass obtainedat a lattie spaing a = 0:10 fm.Collab. r0m0�+ r0m2�+ r0m1+� yearM&P [80℄ 6.33(7)(6) 7.55(3)(8) 7.18(4)(7) 1999Teper [70℄ 5.94(68) 8.42(78) 7.84(62) 1998FP ation [6.74(42)℄ [8.00(35)℄ [7.93(78)℄ 2000Table 5.9: Comparison of glueball masses in units of r0. Values in braketsdenote masses obtained at a lattie spaing a = 0:10 fm and are not extrapolatedto the ontinuum.
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Figure 5.3: Glueball mass estimates for the 2++ hannel. Results from sim-ulations of the Wilson ation (rosses) and a tadpole and tree level improvedanisotropi ation (empty symbols) are shown together with the results obtainedwith the FP ation (�lled symbols). Squares and irles denote the E++ andT++2 mass estimates, respetively.



5.4. Analysis details 755.4.2 Signal/noise ratio of the operatorsAs already mentioned before it is interesting and even neessary to analyzewhih operators are well measured in a simulation and whih operators have alarge ontribution to a given glueball state and thus have a large overlap withthe orresponding wave funtion. This an give some hints about the size of theglueballs and might be helpful for the hoie of operators and smearing shemesin future simulations. It is for this reason that we make statements even if wean only give a tendeny for the preferene of some smearing shemes.Here we only report on our �ndings of what the signal/noise ratio of the op-erators onerns. The analysis of the overlap of eah operator with the groundstate has not yet systematially been done.In eah hannel we analyzed the signal of the operators at � = 3:40 bylooking at the deay in time of the diagonal orrelators. As a measure of thequality of an operator we take the relative error of the orresponding signal."Good" operators have a signal whih an be followed over three time slieswith an auray of around ten perent or even four time slies when aeptingan error less than 50 perent. "Bad" operators an be measured auratelyenough (on the ten perent level) only on time slie � = 0 and 1, while already� = 2 is lost in the noise ompletely. Inluding suh operators in the analysis anbe dangerous, beause they may spoil the solution of the generalized eigenvalueproblem when solved on t0 = 1; t1 = 2, yielding an unphysial guess for thewave funtions, or they may even introdue errors already when trunating theorrelation matries down to a stable subspae of C(t0 = 1).Of ourse the above lassi�ation is not learut but rather depends on howthe operators behave ompared to others in the same hannel, simply meaningthat we sometimes aept operators on an auray level whih would be reasonenough for rejeting them in other hannels.In this sense the following results of the analysis should only be understoodas a rough guide, and one has to keep in mind that the preferred operators andsmearing shemes may depend on the onsidered lattie spaing.In the A++1 {hannel we ould well measure all 22 loop shapes on smearingshemes 3, 4 and 5 exept loop shape #16 and 17, whih ould not be measuredwith omparable auray.The A++2 {hannel ould not be measured at this lattie spaings, however,operators on low smearing levels seem to have a larger signal and smaller relativeerror. Nevertheless, the results indiate that shape #16, 1, 12 and 11 are themost problemati to measure (in the given order).The E++{hannel seems to prefer smearing shemes 3, 4 and 5 at the onsid-ered lattie spaings, however the shapes #1, 9, 16, 17 and the seond projetionof #2, 10 and 22 ould not be well measured even there.In the T++1 {hannel the signal was again too weak to yield any reliable result,but learly the �rst projetion of shape #8 and 22 are muh more diÆult tomeasure than all the others.Analyzing the signal of the operators in the T++2 {hannel we found that theshape #7, the �rst and third projetion of #8, as well as shape #17, 19, the�rst projetions of #18 and 20 ould not be well measured on all the smearingshemes.In the A�+1 {hannel all operators ould be well measured, nevertheless we



76 Chapter 5. Glueballsexluded smearing sheme 1, 2 and 3 in our analysis improving the result on-siderably.While none of the ten measured operators in the A�+2 {hannel gave anyuseful signal, we ould still make out a tendeny for the preferene of lowersmearing shemes.For analyzing the E�+{hannel we exluded the �rst two smearing shemesand the �rst projetion of shape #8 and 22, however the lattie spaing isalready too oarse to get a reliable signal.The T�+1 {hannel shows a lear preferene for the lowest two smearingshemes and shape #9, 11 and 22.In the T�+2 {hannel we exluded the �rst two smearing shemes and insmearing sheme 3, 4 and 5 the operators #7 and the seond projetions of #8,18 and 20.While in the hannels A+�1 ; T+�2 ; A��1 ; A��2 ; E�� we did not �nd any a-eptable signal, A+�2 seems to prefer #9, 14 and 22, E+� #7, 9, 14 and 22on the lowest smearing sheme, T+�1 #5, 6, 7, projetion two and three of #8,projetion two of 9, and shapes #10, 11, 14 and 22,The T��1 {hannel shows a tendeny for the lowest smearing sheme and theshapes #8, 9, 18, 20, 21 and 22.Finally, the T��2 {hannel prefers shape #6, 8, 9, 11 and 22 on the lowersmearing shemes.5.5 Conlusions and outlookThe main result of this hapter is the determination of the 0++ and 2++ glueballmasses using the parametrized FP ation. We obtain 1627(83) MeV for the 0++and 2354(95) MeV for the 2++ glueball mass6, respetively. We observe salingwithin one standard deviation and restoration of the degeneray in the 2++ and2�+ hannel. Mass estimates of the 0�+; 2�+ and the 1+� glueball are alsoobtained and they agree with the best earlier results within our albeit largestatistial errors. Besides being interesting physial results by themselves, thisalulation provides a determination of glueball masses with a very di�erentformulation of lattie gauge theory and, in that sense, on�rms universality.In addition, we observe saling of the results within one standard deviationand the perfet properties of the parametrized FP ation as seen in hapter 4are on�rmed.As mentioned in the introdution, it is well known, that glueball masses arediÆult to measure on the lattie. Indeed, we an barely resolve higher lyingglueball states and measuring exited states beomes impossible at the lattiespaings urrently available to us. In this sense we an not really take advantageof the parametrized FP ation, whih is intended to be used on oarse latties.One way around this diÆulty is to use anisotropi latties, where the lattiespaing in temporal diretion is muh smaller than in spatial diretion, at � as.The onstrution of an anisotropi parametrized FP ation is urrently underinvestigation and we refer to the last hapter for an outlook.6Only the 0++ value represents a ontinuum value, while the 2++ value orresponds tothe one measured at a lattie spaing of a = 0:10 fm.



Chapter 6Conlusions and outlookIn this work we have presented a new parametrization of the FP ation of aspei� RGT. The new parametrization reprodues the lassial properties ofthe ation exellently. This ation was tested extensively on the stati quark{antiquark potential, the �nite temperature phase transition and on the glueballspetrum.The approah we use is building simple loops (plaquettes) from single gaugelinks as well as smeared links. We analytially alulated the ouplings of theFP ation in the quadrati approximation and are was taken not to violate theO(a2) (\on{shell") Symanzik onditions. It is interesting to note that withinthis new ansatz the seond Symanzik ondition is automatially ful�lled. Wealso heked that the parametrization respets approximate sale invariane ofinstanton solutions.We parametrized the FP ation at lattie spaings suitable for performingsimulations on oarse latties in physially interesting regions. Sine we are notonly parametrizing the ation values but also the derivatives with respet to thegauge �elds as well, the ation is espeially suited for the use in Monte Carlosimulations.For testing the ation we measured the ritial temperature and the statiquark{antiquark potential at various values of the gauge oupling. We pro-dued physially interesting results by measuring the glueball spetrum in allsymmetry hannels. The problemati A++1 {hannel is an exellent andidatefor testing the improvements and it indeed shows muh redued lattie artifatsat moderate lattie spaing a ' 0:1 fm as ompared to the Wilson gauge ation.We have determined glueball masses of 1627(83) MeV for the 0++ glueball inthe ontinuum and 2354(95) MeV for the 2++ glueball at a lattie spaing ofa = 0:1 fm.The results of this work are now being proessed for publiation.Another projet urrently under study is the onstrution of a parametrizedFP gauge ation on anisotropi latties. This generalization has not been doneuntil now but it is needed espeially to takle the full glueball spetrum inludingexited states and �nds its appliation in a wide range of problems like thedetermination of the string tension or �nite temperature physis.We have new ideas for the onstrution of suh anisotropi FP ations and formore physial ways of extrating the e�etive renormalized anisotropy a�=a�,77



78 Chapter 6. Conlusions and outlookwhih is a partiular problem in anisotropi lattie studies. We analytiallyalulated the ouplings and the spetrum in the quadrati approximation aswell as the tree level perturbative stati potential. As expeted the spetrum isexat and has the orret anisotropy, while the stati potential shows exellentrotational symmetry and has very little lattie artifats even at distane r = 1.The main idea for the onstrution of an anisotropi FP ation on oarse lattiesis to use the parametrized FP ation presented in this work as a starting pointand to perform one or several RGT steps in the spatial diretions only. In thisway one obtains an ation on an anisotropi lattie, whih shares all the lassialproperties of the isotropi ounterpart.Di�erent possibilities for the parametrization of the ation at oarse lattiespaings are urrently under investigation.



Appendix AThe O(a2) and O(a4)Symanzik onditionsA.1 The O(a2) Symanzik onditionsIn this appendix we derive the O(a2) Symanzik onditions [87, 88, 89, 90, 91, 92℄by onsidering onstant non-abelian gauge potentials. The formulas apply toboth SU(2) and SU(3).It is useful to �rst de�ne for a general gauge �eld in the ontinuum adimension-4 operator R0 = �12X�� Tr �F2��� ; (A.1)and three dimension-6 operators:R1 = 12X�� Tr�(D�F��)2� ; (A.2)R2 = 12X���Tr�(D�F��)2� ; (A.3)R3 = 12X���Tr (D�F��D�F��) : (A.4)The equations of motion are P�D�F�� = 0 hene the O(a2) ('on shell')Symanzik onditions imply only that the oeÆients of R1 and R2 vanish whenone expands a lattie ation in powers of the lattie spaing a. The oeÆientof R3 is not required to vanish (and usually it does not for the FP ation).Let us now speify to onstant gauge potentials, ��A� = 0. In the ontinuumone has F�� = [A�;A� ℄ (A.5)and D�F�� = [A�;F��℄: (A.6)Here A� and F�� are hosen to be anti-hermitian.79



80 Appendix A. The O(a2) and O(a4) Symanzik onditionsWe an put a onstant non-abelian gauge �eld on the lattie by de�ningA� = i�� � 12��; (A.7)where �k; � = k = 1; 2; 3 are the Pauli matries, while �4 = (�1 + �2 + �3)=p3.Expanding any lattie gauge ation in powers of �� and identifying the oeÆ-ients of the operators de�ned in (A.1)-(A.4) one derives the O(a2) Symanzikonditions and a normalization ondition.For the spei� lattie gauge ation ansatz onsidered in setion 2.3 oneobtains1X�<� w�� = 14R0(1 + (4 + 2�0)1)+ 112R1 �1� 21(1� 4�0) + 32(1� �0)2(21 � 22)�+ 12R3�1 + 14(1 + 2�0)(21 � 22)� : (A.8)The normalization ondition is obtained from the oeÆient of R0,p10 + p01(1 + (4 + 2�0)1) = 1 : (A.9)The �rst O(a2) Symanzik ondition requires the oeÆient of R1 to vanish,p10 + p01�1� 21(1� 4�0) + 32(1� �0)2(21 � 22)� = 0 : (A.10)It is interesting to see that the operator R2 is absent and hene the seond O(a2)Symanzik ondition is satis�ed automatially for the general ansatz onsideredhere. Reeting the fat that when the FP ation is expressed in terms ofsimple loops some of them give a nonzero oeÆient of R2, this is even moreastonishing.A.2 Conditions from onstant abelian gauge �eldsFor any solutions of the lattie equations of motion the value of the FP ationshould oinide with the value of the ontinuum ation on the orrespondingontinuum solution. Sine a onstant abelian gauge �eld (F�� = onst.) is asolution in the ontinuum, it should also be a solution on the lattie. Thisfat an be used to derive onditions whih should be ful�lled by the FP ation,however, it provides a nie and onvenient method for alulating onditions, e.g.normalization or O(a4) onditions, for any lattie gauge ation. In the followingwe demonstrate the eÆieny of the method by means of alulating the normand O(a4) Symanzik onditions. Note that the example is for a parametrizationwhere p11 = 0 for simpliity.1From the non-linear parameters only the zeroth order oeÆients ontribute to the normal-ization and the O(a2) Symanzik ondition. To keep notation simple we substitute (0)i ! iin the rest of this setion.



A.2. Conditions from onstant abelian gauge �elds 81Let us �rst remark that the onstant abelian gauge �elds do not ontribute tothe O(a2) Symanzik onditions sine the orresponding dimension-6 operatorsare identially zero for this ase. The O(a4) onditions obtained below aretherefore less important than the O(a2) onditions obtained in the previoussetion and should be used in the �t only if they do not hange signi�antlyother, maybe more important, properties of the FP ation.Nevertheless, the formulae are very useful for heking the programs, evenif the orresponding onstraints are not implemented.Consider now a lattie gauge potential on an in�nite lattie given byU�(n) = exp�i12�3���n�� ; (A.11)where ��� = ����. Then one hasS(�)� (n) = 2 os���U�(n); (A.12)Qs�(n) = �13 X�6=�(1� os���)U�(n) (A.13)and x� = �23 X�6=�(1� os���): (A.14)With this one alulates �(x�) and i(x�). Further one �ndsQ(�)� (n) = A(�)� U�(n); (A.15)where A(�)� = �12 24X�6=��(1� os���) + �(x�)(1� os���)35 : (A.16)The asymmetrially smeared link isW (�)� (n) = B(�)� U�(n); (A.17)where B(�)� = 1 + 1(x�)A(�)� + 2(x�)(A(�)� )2 + : : : : (A.18)The smeared plaquette variable isw�� = 2 �1� os��� �B(�)� B(�)� �2� ; (A.19)and the standard plaquette variable yieldsu�� = 2(1� os���): (A.20)Expanding in powers of ��� one obtains for the O(a2) terms2A = V (p10 + p01(1 + (4 + 2�0)10)) ��212 + �213 + : : :� ; (A.21)2For simpliity of notation we set (j)i ! ij for the rest of this setion.



82 Appendix A. The O(a2) and O(a4) Symanzik onditionswhih yields again the normalization ondition eq. (A.9).The value of the ation should be purely quadrati in �, hene the termsproportional to �212�213 and �412 should vanish. This gives two onditions,p01 �310 + 94210(1 + 2�0) + 211(2 + �0) + 3220(1 + 2�0)�� 12p02 �10 + 210(1 + 2�0)� = 0; (A.22)andp20 � 112p10 + p02 �1 + 410�0 + 4210(1 + �20)�� 112p01 �1 + 210(2 + 7�0) + 3210(2 + 3�20)+811(2 + �0) + 620(2 + �20)� = 0: (A.23)By expressing p01 through the normalization ondition eq. (A.9) one gets equiv-alentlyp20 = 112+ 13p01 �310�0 + 34210(2 + 3�20) + 211(2 + �0) + 3220(2 + �20)�� p02 �1 + 410�0 + 4210(1 + �20)� : (A.24)Equations (A.22) and (A.24) de�ne e.g. p20 and p02 as a funtion of the non-linear parameters �i and (j)i � ij . Note that higher order oeÆients do notontribute to this order, and that p10 and p01 are assumed to be �xed from thenormalization and the O(a2) Symanzik onditions.



Appendix B
Instanton lassial solutionson the lattie
In this appendix we desribe the onstrution and generation of instanton on-�gurations on the lattie and how they an be used in the determination of aparametrized FP ation.FP ations are lassially perfet lattie ations, whih possess sale-invariantinstanton solutions down to a minimum size of around one lattie spaing.The FP ation value for these solutions oinides with the ontinuum value,Aontinst ; AFP = jQFPjAontinst., where QFP is the FP topologial harge operatoron the lattie de�ned through the FP equation, eq. (2.4). For any other on-�guration U the FP ation will be larger than the orresponding ontinuumone-instanton ation AFP(U) � jQFP(U)jAinst. Therefore FP ations are espe-ially suited for lattie studies of topology, whih are usually hampered by thepresene of large lattie artifats, aused by so alled disloations [93, 94℄, i.e.non-zero harged on�gurations whose ontribution to the topologial hargeomes entirely from small loalized regions of O(a4). FP ations, however, al-low a theoretially lean approah to topology on the lattie [2, 95, 96, 3, 97℄,whih has been applied suessfully in SU(2) lattie gauge theory [11, 12, 13℄.Stritly speaking one-instanton solutions on a lattie with periodi boundaryonditions do not exist. This problem an in priniple be irumvented byeither using twisted boundary onditions or one-instanton lassial solutions onopen latties [14℄. However, despite of all this, approximate lassial solutionsas onstruted below an still be taken into aount in the determination ofparametrized FP ations on the footing of normal on�gurations and they anserve to hek the exibility of the present ansatz for the parametrization.We will �rst review the onstrution of SU(2) one-instanton lassial solu-tions on the lattie and then report on some results and observations in theontext of generating these on�gurations.83



84 Appendix B. Instanton lassial solutions on the lattieB.1 Constrution of SU(2) single instanton on-�gurationsWe begin with the known gauge potential for a single ontinuum SU(2) instantonof size � entered at x = 0 in the smooth regular gauge:A�(x) = x2x2 + �2 gy(x)��g(x); (B.1)with g(x) = x4 + ixi�ijxj ; (B.2)where �i; i = 1; 2; 3 are the Pauli matries. This solution an be trivially shiftedto any enter x. As mentioned above, suh a single instanton on�gurationis not a solution of the lassial equations of motion on a periodi volume.Indeed, putting the solution on a periodi torus of size L one �nds [11℄ that itsation diverges linearly due to the disontinuity of the �eld on�guration on theboundary x4 = �L=2, A(L) = Ainst + O(L). Following Pugh and Teper [94℄the problem an be alleviated by onsidering instead on�gurations made of aninstanton and a superimposed disloation1. This is ahieved by performing asingular gauge transformation on the on�guration given in (B.1) before puttingit on the lattie, V�(n) = g(n)U�(n)gy(n+ �̂); (B.3)where g(x) is de�ned in equation (B.2) and U�; V� are gauge link matries onthe lattie. Following [11℄ the �nite volume orretion to the ation of thison�guration is A(L) = Ainst +O(1=L3) and we will use the ansatzA(L) = Ainst + a1 � �L�3 + a2 � �L�5 (B.4)when studying the �nite size behavior of the on�gurations.In order to disretize the above on�gurations we de�ne the link variableson the lattie by approximating the path ordered exponentialU�(n) = P exp i Z n+�̂n A�(x)dx! (B.5)through a produt along the lines of the lattie,U�(n) =Yj �U�(n; j); (B.6)where the fators�U�(n; j) = exp (iA�(xj = na+ j�x�̂)�x) (B.7)are evaluated for the interval [xj ��x=2; xj +�x=2℄. One typially breaks thelattie spaing up into 20 equal intervals, �x = a=20, in order to ahieve anaurate evaluation of (B.5) for all ases of interest.1The disloation an be interpreted as the remnant of a small anti-instanton that fellthrough the lattie.



B.2. Results and omments on SU(2) single instanton on�gurations 85A muh nier way is to use a losed expression of equation (B.5) obtainedby performing the path ordered integral analytially [98℄:U4(x) = os f4(x) � i xi�ipx2 � x24 sin f4(x); (B.8)Ui(x) = os fi(x) + ix4�i � �ijkxj�kpx2 � x2i sin fi(x); i = 1; 2; 3; (B.9)f�(x) = s x2 � x2�x2 � x2� + �2 (B.10)�24artan0� a+ x�qx2 � x2� + �21A� artan0� x�qx2 � x2� + �21A35 :With these expressions the instanton on�gurations an diretly be put on thelattie with x�=a = integer provided x is not a lattie site. In order to lose theboundary we perform a singular gauge transformation as mentioned previously,V�(x) = g(x)U�(x)gy(x+ �̂); (B.11)where V�(x) is now as lose as possible to the unity at the boundary.B.2 Results and omments on SU(2) single in-stanton on�gurationsWe generated SU(2) single instanton on�gurations on a 124 lattie with theinstanton radius �=a ranging from 3:0 down to 1:1 entered in a hyperube,x = (5:5; 5:5; 5:5; 5:5), in a ube, x = (5:5; 5:5; 5:5; 6), and in a plaquette,x = (5:5; 5:5; 6; 6), in the singular gauge following the onstrution as pre-sented in the previous setion. Then we bloked the on�gurations down to a64 lattie, the instanton radii being halved, and then inverse bloked them bakto the �ne lattie. The inverse bloking means that, keeping the oarse on�g-uration �xed, one searhes for a on�guration whih minimizes the r.h.s. of theFP equation (2.4). The on�gurations are minimized until the ation dereaseper sweep was less than 10�6 to 10�8. As the starting �ne on�guration weused the originally generated �ne on�guration.It is interesting to investigate the minimization proess more losely in orderto observe the falling through the lattie of the instantons. As expeted it turnsout that the instanton solutions are relatively smooth on�gurations even onthe oarse lattie having u � 0:25 exept for some plaquettes near the instantonenter. The utuations of these few plaquettes are growing when the instantonradius �=a is dereased, i.e. when the instantons are more and more loalizedobjets, and they reah a maximum value between 1 � u � 2 at around �=a ' 1.This is exatly when the instanton falls through the lattie to possibly beomea disloation.This falling through is expressed in the minimization proess through a jumpin the value of the bloking kernel, whih is exatly zero for a lassial solutionand non-zero for any other on�guration. Figures B.1 shows the evolution of



86 Appendix B. Instanton lassial solutions on the lattieone-instanton lassial solutions on a 124 lattie entered in a hyperube duringthe minimization proess. V is the �xed oarse on�guration and U denotesthe minimized on�guration on the �ne lattie. The radius � of the instantonon�gurations is in units of the oarse lattie spaing. Note, that AFP (V ) =AFP (U) + T (U; V ) and that for an exat lassial solution of the FP ation onehas T (U; V ) = 0. The values of the ation and the bloking kernel are in units ofthe ontinuum ation value 4�2, while the ation derease per sweep is resaledappropriately.The �rst on�guration with �=a = 0:90 is already lose to a lassial solutionright from the beginning and it onverges to the �nal minimized on�gurationvery fast. Note that T (U; V ) is indeed zero up to �nite volume orretionsO((�=L)3) from the boundaries.The seond on�guration with �=a = 0:85 is still lose to a lassial solutionat the beginning, but slowly deviates from it during the minimization proess.After around 35 sweeps, a di�erent more preferable minimizing on�gurationis found, whih is no longer a lassial solution (T (U; V ) 6= 0). This is whenthe instanton falls through the lattie and it is expeted to be aompanied bya drop of the FP topologial harge QFP from QFP = 1 to QFP = 0, therebypreventing the on�guration from being a disloation.The third on�guration falls through the lattie after already 10 sweeps and�rst onverges towards a loal minimum in the spae of minimizing on�gura-tions before �nding the true, presumably global minimum.These results are olleted in �gure 2.1 in setion 2.5 on the example of on-�gurations entered in a hyperube. The falling through the lattie is learlyvisible from the jump in A(U) and T (U; V ) and shows itself in the disontinuityin A(V ) at �=a � 0:88. Similar �gures are obtained on on�gurations enteredin a ube and a plaquette, respetively.As is lear from setion 2.5 one has large degrees of freedom in parametrizinga FP ation, and indeed, we have several equally good parametrizations on theintermediate level being appropriate for utuations involved in the instantonon�gurations. It is interesting to see how the minimized on�gurations areinuened by the hoie of the ation in the minimization proedure. It turnsout that minimized on�gurations di�er signi�antly from eah other: usingsome parametrized FP ation on a on�guration previously minimized with adi�erent parametrized FP ation an result in an ation derease during the �rstsweep as high as 8 � 10�2, however, the ation value itself, A(U) + T (U; V ) doesnot di�er more than 1:2% in the end. This is just an artifat of our inabilityto parametrized the FP ation aurately enough, but onsolidates the expe-tation that the hoie of the ation should not be ruial apart from ful�llingsome minimal requirements.Having the �nal parametrization of the FP ation at hand, it is interesting tosee how the ation performs on generi instanton solutions. For this purpose wegenerated several instanton on�gurations with varying radii �=a = 1:1; : : : ; 3:0and on di�erent latties L = 8; 10; : : : ; 18 aording to the proedure desribedabove. These on�gurations are then bloked to a oarse lattie and evaluatedwith the parametrized FP ation given in table 2.1, and �nally, the results areextrapolated to in�nite volume using formula (B.4). The results for instantonon�gurations entered in a ube is shown in �gure 2.2 in setion 2.5 and om-



B.2. Results and omments on SU(2) single instanton on�gurations 87pared to the results obtained with the Wilson ation. Figure B.2 shows thesame for instanton on�gurations entered in a plaquette.
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Appendix CThe Ferrenberg-SwendsenreweightingIn order to express quantities alulated on the lattie in physial units onehas to �nd the relation between the oupling of the theory and the lattie ut-o� a. This an, for instane, be ahieved through a alulation of the ritialouplings � for the phase transitions on latties with given temporal extent N� .However, the determination of the ritial ouplings is in general a deliate andsubtle matter and therefore having di�erent methods of determining the ritialpoints of the theory at hand may be of great help.The Ferrenberg-Swendsen reweighting [46, 45℄ is a method for optimizing theanalysis of data from single or multiple Monte Carlo (MC) omputer simulationsover wide ranges of parameter values and whih is based on ideas �rst proposedby [43, 44℄. The method is appliable to simulations in lattie gauge theories aswell as statistial mehanis. The method allows expliit error estimates, whihin turn provides a lear and simple guide for objetive planning of the length ofadditional runs and parameter values to be simulated.In setion C.1 we will �rst review the Ferrenberg-Swendsen reweighting teh-nique in the single-histogram ase. Then the method is extended in setion C.2to the ase when data from several MC runs are ombined. Throughout thetwo setions, simulations of the two-dimensional Ising model will serve as elui-dating examples in the ase of a seond order phase transition. In setion C.3�nally, the method is applied to the 10-state Potts model in two dimensions asfor illustration at a �rst order phase transition.C.1 The single-histogram reweightingAll the information about a statistial system at a given temperature T = 1=�is ontained in the partition funtion,Z(�) =Xf�g e��S(�) =XS W (S)e��S ; (C.1)where f�g is the set of all on�gurations of the system, S is the energy for agiven on�guration andW (S) is the density of states at energy S or the spetraldensity funtion. 90



C.1. The single-histogram reweighting 91The Ferrenberg-Swendsen interpolation or spetral density method relies onthe fat that the density funtion is universal in the sense that it is the same atevery temperature and thus ontains in priniple all the information about thesystem at any temperature or oupling �. In pratie we an estimate the spe-tral density funtion only in some �nite range of energies and we are thereforelimited to a �nite range of ouplings near the original simulation point. How-ever, for ouplings near ritiality the probability distributions for the statesinvolved are very broad and thus there is a large overlap with typial on�g-urations at di�erent ouplings. Therefore the method is most powerful in theviinity of ritiality.Consider now a simulation at oupling � with n� measurements. The valueS for the ation appeared N�(S) time, i.e. PS N�(S) = n�. We an estimatethe probability to �nd a on�guration with energy S:P�(S) = W (S)e��SZ(�) � N�(S)n� : (C.2)The same holds true for another arbitrary oupling �0:P�0(S) = W (S) e��0SZ(�0) : (C.3)Dividing equations (C.2) and (C.3) we obtainP�0(S) = P�(S) e(���0)S Z(�)Z(�0) : (C.4)The ratio of the two partition funtions an be written asZ(�0)Z(�) = XS W (S) e��0SZ(�)= XS W (S) e��SZ(�) e(���0)S= XS P�(S) e(���0)S ;and together with equation (C.4) we arrive atP�0(S) = P�(S) e(���0)SPS P�(S) e(���0)S : (C.5)We an now alulate an observable O at any other oupling �0 from our simu-lation at �, hOi = 1Z(�0)Xf�g O(�) e��0S(�) (C.6)= 1Z(�0)Xf�gXS Æ(S � S(�))O(�) e��0S (C.7)= XS �O(S)P�0(S); (C.8)



92 Appendix C. The Ferrenberg-Swendsen reweightingwhere the e�etive value of the observable at ation S reads�O(S) = Pf�g Æ(S � S(�))O(�)W (S) � PN�(S)j=1 O(�j)N�(S) : (C.9)For illustration and for heking the implemented ode let us look at thespei� heat of the Ising model in two dimensions, where the exat solution isknown [99℄. In �gure C.1 - C.3 the �lled irles show the results of three MCsimulations near and at the in�nite volume ritial oupling � = ln(1+p2)=2.All three simulations used the Swendsen-Wang luster algorithm [100℄ with 5000sweeps for equilibration and 30000 measurements on a 162 lattie. The resultsof the reweighting proedure are shown as open irles and ompared to theexat urve. Error bars are estimated using the bootstrap method. Even withmodest statistis we are able to reprodue the peak of the spei� heat withreasonable auray. Note that the peak is shifted away from � due to �nite sizee�ets. To understand the deviations from the exat urve and the inreasingerror estimates for �-values away from the simulated point it is useful to lookat the energy histograms in �gure C.4. The urve labeled with � = � isthe histogram from the simulation at the ritial oupling and the other twohistograms at � = 0:375 and � = 0:475 are omputed from the input histogramby reweighting. For omparison we have inluded the histograms obtained fromthe simulations at � = 0:375 and � = 0:475, indiated by the blak dots. The�gure learly shows that the simulation at � for example does not provideenough information about on�gurations typially showing up in a simulationat � = 0:375 and thus a reweighting from � breaks down at around � = 0:4.This breakdown is also responsible for the inrease of the error estimates in thereweighted urve of the spei� heat in C.3 for � � 0:4.To take full advantage of the histogram reweighting tehnique it is advisableto ombine the information from di�erent simulations. In the next setion wewill explain and illustrate how this an be ahieved in an eÆient way.C.2 The multi-histogram reweightingIn the last setion we showed how histograms an be used to inrease the amountof information obtained from a single omputer simulation in the neighborhoodof a ritial point. For more general problems, however, it is often neessary toperform simulations at more than one parameter value. We will now desribean optimized method proposed by Ferrenberg and Swendsen for ombining thedata from an arbitrary number of simulations to obtain information over awider range of parameter values. Again the method is appliable to lattiegauge theory, but for simpliity we will illustrate and test the proedure on the2D Ising model and later on the q-state Potts model.Let us start with realling two simple equations from the single-histogramase: P�(S) = W (S) e��SZ(�) � N�(S)n� ; (C.10)W (S) � N�(S)n� Z(�) e�S : (C.11)
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Figure C.1: The spei� heat of the 2D Ising model omputed by reweighting(empty irles) from a single MC simulation at � = 0:375 (�lled irle) on a 162lattie with 30000 measurements. The solid line indiates the exat result foromparison.
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Figure C.2: The spei� heat of the 2D Ising model omputed by reweighting(empty irles) from a single MC simulation at � = 0:475 (�lled irle) on a 162lattie with 30000 measurements. The solid line indiates the exat result foromparison.
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Figure C.4: The energy histogram at the simulation point � = �, and the onesreweighted to � = 0:375 and � = 0:475. The blak dots indiate the histogramsobtained in additional simulations at these temperatures.



C.2. The multi-histogram reweighting 95Suppose we have performed MC runs at K di�erent �-values � = �1; �2; : : : ; �Kof length nk, where we measured the frequenies Nk(S). For every run there isa partition funtion Z(�k) whih orresponds to the free energy fk � F (�k) ofthe run: F (�k) = � lnZ(�k): (C.12)We an write down the (estimated) spetral density funtion (C.10) for eah ofthe K MC runs, Wk(S) � Nk(S)nk Z(�k) e�kS (C.13)= Nk(S)nk e�kS�fk ; (C.14)however, there should be only one unique funtion �W (S). To get an improvedestimate for �W (S) one takes a weighted average of the previously de�ned densityfuntions with the following ansatz:�W (S) � KXk=1 pk(S)Wk(S) with KXk=1 pk(S) = 1: (C.15)Ferrenberg and Swendsen proposed to hoose the weights suh that the errorin the resultant estimate for �W (S) is minimized, assuming that the errors onthe relative frequenies Nk(S)=nk is gk=nk = (1 + 2�k)=nk, with �k being theintegrated autoorrelation time. With this ondition one getspk(S) = nkgk e��kS+fkPKl=1 nlgl e��lS+fl (C.16)and �W (S) = PKk=1 Nk(S)gkPKl=1 nlgl e��lS+fl : (C.17)One an now alulate the partition funtion at an arbitrary �-value,�Z(�) =XS �W (S)e��S; (C.18)and from this the orresponding free energiesfk = � ln �Z(�)����=�k ; (C.19)whih have to be regarded as impliit onditions for eah of the fk's. We nowgive up the original de�nition, that fk is the free energy of the partiular MC runat �k, but instead assume them to be free parameters, using equations (C.18)and (C.19) iteratively to �nd a self-onsistent solution. EÆient onvergene isobtained by using the derivatives of the new values of fk as funtions of the oldvalues in the iteration proess.The expetation value of any observable an be alulated at some arbitraryoupling �0 using the formulahOi�0 = 1�Z(�0)XS �O(S) �W (S) e��0S : (C.20)



96 Appendix C. The Ferrenberg-Swendsen reweightingIn pratise all the formulas are expressed in terms of ation di�erenes and�-value shifts in order to deal with numerially stable quantities.For illustration we again resort to the 2D Ising model and alulate thereweighted spei� heat from the two simulations at � = 0:375 and � = 0:475.The impressive result is displayed in �gure C.5. One sees that the error es-timates are small over the whole range of �-values onsidered indiating thatthe reweighted urve is alulated aurately enough to determine the ritialoupling very preisely. Indeed, the reweighted urve oinides with the exatresult within less than one standard deviation.
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Figure C.5: The spei� heat of the 2D Ising model omputed by reweighting(empty irles) from two MC simulations at � = 0:375 and � = 0:475 (�lledirles) on a 162 lattie with 30000 measurements eah. The solid line indiatesthe exat result for omparison.C.3 Reweighting at �rst order phase transitionsThe mehanism of the reweighting proedure relies on the fat that the distribu-tion of on�gurations at a given �-value overlaps with the distribution at another�-value. As emphasized in the previous setions this feature is even enhanednear the ritiality of a seond order phase transition, where the probabilitydistributions for the states involved are very broad. Reeting the fat thatat a �rst order phase transition, the energy probability distributions shows adouble peak struture (f. �gure 3.3) it is not obvious from the beginning if theproposed method is as powerful as for a seond order phase transition. Indeed,by simulating at a temperature slightly below or above the ritial temperature,we are olleting information about on�gurations in one or the other phase onlyand it is merely exatly at the ritial point where we enounter oexistene of



C.3. Reweighting at �rst order phase transitions 97the two distint phases and thus have aess to information on both phases.As it turns out the diÆulties are relieved due to the fat that one has towork on �nite volumes, where the sharp �rst order phase transition is roundedo�. In fat, near the ritial temperature the system will jump from one phase tothe other from time to time, thene yielding information about the probabilitydistributions of on�gurations in both phases. As a testing ground for thislaim we have to resort to a statistial system whih is easy to simulate andwhih exhibits a �rst order phase transition. Suh a model is provided by ageneralization of the Ising model in two dimensions, the q-state Potts model[101℄. The model is de�ned through the HamiltonianHPotts = ��Xhiji Æ�i�j ; �i � 1; : : : ; q; (C.21)where Phiji denotes the sum over all nearest neighbors, and where we reoverthe Ising model by setting q = 2. In two dimensions the system is exatly knownto exhibit a seond order phase transition for q � 4 and a �rst order transitionfor all q � 5 [102℄1. Sine the �rst order phase transition is known to be weakfor small q, we hoose q = 10 in our study.Let us �rst look at the energy probability distribution of the system. In�gure C.6 we display the energy distribution of a simulation at � = 1:405near the �nite volume ritial oupling. The other two histograms are the
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Figure C.6: The energy histogram at the simulation point � = 1:405 near theritial oupling and the ones reweighted to � = 1:375 and � = 1:425. Theblak dots indiate the histograms obtained in additional simulations at thesetemperatures.energy distributions obtained by reweighting to � = 1:375 and � = 1:425, while1In three dimensions the model enjoys a �rst order phase transition for all q � 3.



98 Appendix C. The Ferrenberg-Swendsen reweightingthe blak dots show the results of the orresponding additional simulations foromparison. In all simulations we use the Metropolis update algorithm on a 122lattie with 104 sweeps for equilibration and 104 measurements on 106 sweeps.The quantitative oinidene of the reweighted distributions with the simulatedones is very onvining even in the tails of the distributions.As a �nal hek let us look at the magneti suseptibility of the system.As opposed to the Ising model in two dimensions no exat solution is knownfor th q-state Potts model. Therefore we ompare the result obtained fromthe reweighting to additional simulations near the estimated ritial tempera-ture2. In �gure C.7 the �lled irles denote the results of two MC simulationsat � = 1:375 and � = 1:425 and the solid line shows the results obtained byreweighting the data from the two simulations. Error bars and bands are al-ulated using a bootstrap proedure. The empty irles show the results ofadditional simulations at several ouplings around the ritial value. For laritythe region around the peak is enlarged in �gure C.8, where we also inlude theurve obtained by reweighting the data from the additional simulations. Asin the Ising model the suseptibility peak an be reprodued with an amazingauray. Indeed, if we determine the ritial oupling as the loation of thesuseptibility peak we obtain � = 1:4051(11) from the simulations at � = 1:375and � = 1:425 and � = 1:4050(4) from the additional simulations.

1.35 1.375 1.4 1.425 1.45
β

0

2

4

6

8

10

12

14

χ m

β=1.425β=1.375Figure C.7: The magneti suseptibility of the 2D 10-state Potts model on a 122lattie. The reweighted urve (solid line) is omputed from MC simulations � =1:375 and � = 1:425 (�lled irle) and ompared to additional MC simulations(empty irles).2Although the ritial oupling for the q-state Potts model is known exatly in the ther-modynami limit, � = ln(1+pq), we an not rely on this value due to the onsiderable �nitevolume shift.



C.3. Reweighting at �rst order phase transitions 99

1.39 1.395 1.4 1.405 1.41 1.415 1.42
β

9

10

11

12

13

14

χ m

Figure C.8: Enlargement of the region around the magneti suseptibility peakin �gure C.7. The additional solid line is the reweighted urve omputed fromthe MC simulations displayed as empty irles.



Appendix DExtrating masses fromorrelation funtionsIt is well known that energies of partiles and gauge strings an be extratedfrom orrelation funtions of operators having appropriate quantum numbers.Here we are onerned in partiular with the extration of partile and stringmasses, thene it suÆes to onsider orrelation funtions with zero momentumonly and we suppress the momentum dependene in the following. In Eulideanspae with a lattie periodi in time T we haveh0jO(t)Oy(0)j0i � C(t) =Xn Zne�Ent (D.1)for Wilson loop orrelators andC(t) =Xn Zn �e�Ent + e�En(T�t)� (D.2)for glueballs and mesons1. The energy spetrum an in priniple be extratedfrom the orrelation funtions. In partiular, only the lightest state survives atlarge times, limlargetC(t) � � e�E0t Wilson loops;e�E0t + e�E0(T�t) mesons, glueballs; (D.3)and thus the ground state energy an be determined from the exponential deayof the orrelation funtion at large times.The primary diÆulty in this stage is one of reliably identifying the regionsof time slies where the orrelator takes the asymptoti form in equation (D.3),i.e. identifying the plateau region. For �nite values of t we always have exitedstate ontributions and therefore it is of ruial importane to have an operatorwith large overlap to the ground state. For this purpose di�erent operatorsOn having the same quantum numbers are measured and a linear ombinationis onstruted in order to disentangle the ground state ontribution from the1This relation only holds for partiles with integer spin and is slightly modi�ed for spin-1/2 partiles like baryons, where forwardly and bakwardly propagating partiles have to bedistinguished. 100



D.1. Variational tehniques 101exited state ontributions. To determine the appropriate linear ombinationwe invoke variational tehniques whih are desribed in detail in the �rst setionof this appendix.One the exited state ontributions are unraveled from the ground state aplateau region is identi�ed and one an extrat the ground state mass by eitheralulating the e�etive mass,me�(t) = � ln�C(t+ 1)C(t) � ; (D.4)in the plateau region or �tting the ground state orrelation funtion C(t) to anansatz of the form given in equation (D.1) or (D.2). This issue is given furtheronsideration in the seond setion of this appendix.D.1 Variational tehniquesIn a simulation we estimate the elements of the N �N orrelation matrix usingthe Monte Carlo (MC) method,C��(t) = h0jO�(t)Oy�(0)j0i; (D.5)where the rank N of the matrix depends on the number of smearing shemesand the number of operators under onsideration. The oeÆients v� in thelinear ombinationPN�=1 v�O� with the largest overlap to the ground state aredetermined by minimizing the e�etive mass2,m(t0; t1) = � ln� (v; C(t1)v)(v; C(t0)v)� =(t1 � t0): (D.6)This is equivalent to solving a generalized eigenvalue equation,C(t1)v = e�E(t1�t0)C(t0)v; (D.7)whih is well de�ned only for positive de�nite C(t0). In general, however, pos-itiveness of C(t0) is not automatially ful�lled for t0 � 1, but an be ahievedin the following way.We �rst diagonalize C(t0),C(t0)'i = �i'i; �1 � : : : � �N ; (D.8)and projet the orrelation matries to the spae of eigenvetors orrespondingto the M highest eigenvalues,CMij (t) = ('i; C(t)'j); i; j = 1; : : : ;M: (D.9)By hoosing the operator spae too large we introdue numerial instabilitiesaused by very small (even negative) eigenvalues with large statistial errorsdue to the fat that the hosen operator basis is not independent on the givenMC sample. By hoosing M appropriately we an get rid of those unphysial2In the following we use matrix notation for C��(t) and suppress the indies whenever itis appropriate.



102 Appendix D. Extrating masses from orrelation funtionsmodes while still keeping all the physial information. In this way we renderthe generalized eigenvalue problem well de�ned.Of ourse the �nal result should not depend on the hoie of M and one hasto take are in eah ase that this is really so. Our observation is that for anyaeptable statistis one always �nds a plateau in M for whih the extratedmasses are stable under variation of M .Note that the above proedure is not neessary for the hoie t0 = 0 sineC(t0 = 0) is positive de�nite by de�nition. However, determining the operatorbasis from C(t0 = 0) and C(t1 = 1) in eq. (D.7) is under suspiion of ontaininglittle physial information about the orrelation lengths, sine C(t0 = 0) atuallyjust desribes the relative normalization of the operators. This is the reason forhoosing t0 = 1; t1 = 2 in our analysis whenever it is possible3.In a next step we determine the vetors vn; n = 1; : : : ;M through the gen-eralized eigenvalue equation (the index � = 1; : : : ;M is suppressed)CM (t1)vn = e�En(t1�t0)CM (t0)vn; E1 � : : : � EM ; (D.10)and projet the orrelation matries CM (t) again to the eigenspae orrespond-ing to the K �M highest eigenvalues, i.e. the K �M lowest energies,CKij (t) = (vi; CM (t)vj); i; j = 1; : : : ;K �M; (D.11)for the data-�tting phase. The trunated orrelation matries CKij (t) are �ttedin the range t = tmin : : : tmax using the ansatzCij(t; f ;mg) = K0Xn=1 ni �nje�mnt Wilson loops (D.12)for the Wilson loop orrelators andCij(t; f ;mg) = K0Xn=1 ni �nj(e�mnt + e�mn(T�t)) glueballs (D.13)for the glueball orrelators. In both formulas,  ni � (CK(t0)vn)i and K 0 6= Kin general.For all pratial purposes we hoose K 0 = K = 1 to obtain an energyestimate of the lowest-lying state and K 0 = K = 2 for an energy estimate ofthe �rst-exited state and an additional estimate of the ground-state energy.Inreasing K 0 = K allows to hek for the stability of the energy estimate of thelowest-lying state. In the glueball analysis we hoose K 0 = K = 2 or 3 for theA++1 -hannel where we also �t the vauum energy and its wave funtion sinewe do not subtrat the vauum ontribution hO�ihOy�i from the orrelators, f.remarks in setion 5.4.D.2 Correlated �tsThe standard way to �t a funtional form to a set of data is to minimize ameasure of the goodness of the �t as a funtion of the �t parameters suh as3It is prevented only by badly measured operators due to insuÆient statistis.



D.2. Correlated �ts 103f ;mg given above. If this proedure is to be a meaningful test of the �ttingfuntion, suh a measure must take into aount all kind of orrelations in thedata Cij(t) between di�erent operators at di�erent time slies. In all our �ts weuse the orrelated �2-funtion where the orrelation between the data points isaounted for with the ovariane matrix (Cov),�2(f ni;mng) =XijklXt;t0 �Cij(t)� Cij(t; f ;mg)�(Cov)�1ijt;klt0�Ckl(t0)� Ckl(t0; f ;mg)�; (D.14)where the sum Pijkl is over i � j and k � l only and Pt;t0 is meant as asum over the �tting range t; t0 = tmin : : : tmax. The (symmetri) data ovarianematrix is de�ned as(Cov)ijt;klt0 = 1N(N � 1) NXk=1 �C(k)ij (t)� hCij(t)i��C(k)kl (t0)� hCkl(t0)i� :(D.15)Here the sum is over N on�gurations or bins, C(k)ij (t) denotes the value of theorrelation matrix element i; j at time slie t from on�guration or bin k andhCij (t)i = 1=NPNk=1 C(k)ij (t). To prevent the ovariane matrix from gettingtoo large it is alulated only in the last step of the analysis, i.e. when the fullorrelation matrix is trunated down to the small K�K matrix CK(t) and the�tting range tmin : : : tmax is spei�ed. The smallness of the ovariane matrixis even more important regarding the fat that the number N of on�gurationsor bins must be at least as large as the number of olumns of the ovarianematrix sine otherwise it ontains repeated olumns and is rendered singular.For linear statistis � it is easy to show that the ovariane matrix an bealulated diretly from the Jakknife samples, say �(k), through the formula(Cov)ij = N � 1N NXk=1(�(k)i � �(:)i )(�(k)j � �(:)j ); (D.16)where �(:)i = 1=NPNk=1 �(k)i is the average of the Jakknife samples. For non-linear statistis, however, the relation no longer holds true but the r.h.s. anstill be used as an estimate for the elements of the ovariane matrix. Equation(D.16) turns out to be most onvenient for the analysis of the glueball orrelationmatries where we are dealing with a large number of operators and thereforeworking with Jakknife instead of Bootstrap samples due to memory and speedlimitations.



Appendix EThe ubi point group OhOn a ubi lattie the rotation symmetry is broken down to the symmetry groupof a ube, the ubi (or otahedral) group O onsisting of 24 disrete rotations.In addition to the transformations of the ubi group we onsider the disretesymmetry of total spatial inversion of whih the eigenvalues are denoted byparity P = �1. Combining these transformations we obtain the ubi pointgroup Oh = O � Z2 ontaining 48 group elements.E.1 The group elements of OhThe notation for the rotations follows [103℄, E denoting the unity element, Cnjdenoting a proper rotation through 2�=n in the right-hand srew sense aboutthe axis Oj and I denoting the spatial inversion operator. All the axes involvedare indiated in �gure E.1.
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Figure E.1: The rotation axes Oa;Ob;O;Od;Oe;Of;Ox;Oy;Oz;O�;O�;Oand OÆ.An element T 0 of a group G is said to be onjugate to another element T ofG if there exists an element X of G suh thatT 0 = XTX�1: (E.1)104



E.1. The group elements of Oh 105A set of mutually onjugate elements of G is alled a onjugay lass. A lassan be onstruted from any T�G by forming the set of produts XTX�1 foreah X�G, keeping only the distint elements. It is lear that, for example, theidentity E forms a lass by its own.In the following the elements of the ubi point group are listed in onjugaylasses: C1 = fEg;C2 = fC3�; C3� ; C3g; C3Æ; C�13� ; C�13� ; C�13 ; C�13Æ g;C3 = fC2x; C2y ; C2zg;C4 = fC4x; C4y ; C4z; C�14x ; C�14y ; C�14z g;C5 = fC2a; C2b; C2; C2d; C2e; C2fg;C6 = fIg; (E.2)C7 = fIC3�; IC3� ; IC3 ; IC3Æ ; IC�13� ; IC�13� ; IC�13 ; IC�13Æ g;C8 = fIC2x; IC2y ; IC2zg;C9 = fIC4x; IC4y ; IC4z; IC�14x ; IC�14y ; IC�14z g;C10 = fIC2a; IC2b; IC2C ; IC2d; IC2e; IC2fg:Of speial interest in the ontext of irreduible representations are the fol-lowing theorems :Theorem 1 For a �nite group G the number of inequivalent irreduible repre-sentations is equal to the number of lasses of G.Theorem 2 For a �nite group G, the sum of squares of the dimensions of theinequivalent irreduible representations is equal to the order of G.Taking together both theorems, it is suÆient in the ase of the ubi pointgroup Oh to speify the dimensions of the inequivalent irreduible representa-tions. From Theorem 1 it follows that there are �ve inequivalent irreduiblerepresentations for the ubi group, �p; p = 1; : : : 5, and ten for the ubi pointgroup, respetively. In the ase of the ubi group Theorem 2 amounts to theequation 5Xp=1 d2p = 24; (E.3)where dp denotes the dimension of the orresponding irreduible representation�p. The equation has a unique solution given by fn1 = n2 = 1; n3 = 2; n4 =n5 = 3g and thereby yielding a unique spei�ation of the dimensions of theirreduible representations of the ubi group. The solution is trivially extendedto the ubi point group sine the additional irreduible representations areonneted to the ones of the ubi group by the parity transformation.In the following one-dimensional representations are denoted by A, two-dimensional irreduible representations by E and three-dimensional irreduiblerepresentations by T with supersripts � indiating representations that areeven and odd under the parity transformation I , respetively.



106 Appendix E. The ubi point group OhE.2 The harater tableThe haraters are a set of quantities whih are the same for all equivalent repre-sentations. For �nite groups (and ompat Lie groups) they uniquely determinethe representations up to equivalene, in partiular they provide a ompletespei�ation of the irreduible representations that appear in a reduible repre-sentation �.The number of times np that an irreduible representation �p appears in areduible representation �, � = n1�1 � n2�2 � : : : ; (E.4)is given for a �nite group G bynp = 1gXT�G �(T )�p(T )�; (E.5)where �(T ) and �p(T ) are the haraters of � and �p, respetively, and g is theorder of the group G. Note that for matrix representations the harater of agroup element, �(T ), is simply given by the trae of the orresponding matrixrepresentative and that the harater is the same for all elements in a givenonjugay lass.In table E.2 we list for eah irreduible representation �1; : : : ;�10 of theubi point group the haraters of the onjugay lasses C1; : : : ; C10.C1 C2 C3 C4 C5 C6 C7 C8 C9 C10�1 A+1 1 1 1 1 1 1 1 1 1 1�2 A+2 1 1 1 -1 -1 1 1 1 -1 -1�3 E+ 2 -1 2 0 0 2 -1 2 0 0�4 T+1 3 0 -1 1 -1 3 0 -1 1 -1�5 T+2 3 0 -1 -1 1 3 0 -1 -1 1�6 A�1 1 1 1 1 1 -1 -1 -1 -1 -1�7 A�2 1 1 1 -1 -1 -1 -1 -1 1 1�8 E� 2 -1 2 0 0 -2 1 -2 0 0�9 T�1 3 0 -1 1 -1 -3 0 1 -1 1�10 T�2 3 0 -1 -1 1 -3 0 1 1 -1Table E.1: Charater table for the ubi point group.E.3 Wave funtions of glueball operatorsIn this setion we list the orthogonal wave funtions of the irreduible operatorswhih an be built from some of the Wilson loop shapes up to length eight. Theloop shape numbers orrespond to the ones in �gure 5.1. Eah row orrespondsto a given orientation of the loop shape under onsideration. Notation is �xedthrough ordering the orientations in the following way. We onstrut a loopshape prototype with the path �rst going in 1-, then in 2- and �nally, if neessary,in 3-diretion as displayed in �gure 5.1. From this referene orientation all othersare generated by applying the group elements in the order as given in (E.2). Care



E.3. Wave funtions of glueball operators 107has to be taken not to generate orientations equivalent up to translations. Thenumbers in eah row denote the ontribution of the spei� orientation to thewave funtion in question. Suitable normalization fators are understood and,aording to C-parity C = �1, the real or imaginary part has to be taken.Consider now an example expliitly and take a look at the single plaquetteoperator (loop shape #1). The three (positive) orientations of the single pla-quette an be labeled as O12; O13 and O23. The �rst E++ wave funtion is thenonstruted as OE++ = 2O12 �O13 �O23.The two and three wave funtions in the E- and T -hannels, respetively, aredegenerate states having the same quantum numbers and an thus be regardedas di�erent "polarizations" belonging to the same "spin state" and transformingamong eah other under the ubi point group. The freedom in the hoie ofthe orthogonal basis funtions an be used to onstrut basis funtions whihare simultaneous eigenfuntions of mutually ommuting group elements.Thus for the irreduible representations of dimension greater than one (E; T1and T2) we have hosen a basis of wave funtions whih are simultaneous eigen-funtions under the group elements C2x; C2y; C2z and their parity transformedpartners. In the E-hannel the wave funtions are in addition eigenfuntionsunder C4z ; C�14z ; C2a; C2b and the orresponding parity transformed group ele-ments.In the following tables on page 107 { 113 we list the orthogonal wave fun-tions of the irreduible operators whih an be built from Wilson loops up tolength eight. Note that the expressions for loop shape #8, 9, 11, 18, 20 and 22are too lengthy and an thus not be displayed.loop shape #1A++1 1 1 1E++ 2 -1 -10 1 -1T+�1 0 0 10 1 01 0 0loop shape #2A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 2 -1 -1 -1 -1 20 1 -1 1 -1 0E++ 0 1 -1 -1 1 0-2 1 1 -1 -1 2T+�1 0 0 1 0 1 00 1 0 1 0 01 0 0 0 0 1T+�2 1 0 0 0 0 -10 0 1 0 -1 00 -1 0 1 0 0



108 Appendix E. The ubi point group Ohloop shape #3A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 -2 -2 -2 -2 1 1 1 1 1 1 11 0 0 0 0 -1 -1 -1 -1 1 1 1T++2 0 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 -1 1 10 0 0 0 0 -1 1 1 -1 0 0 0T�+1 0 1 -1 -1 1 1 -1 1 -1 0 0 0-1 -1 -1 1 1 0 0 0 0 1 -1 1-1 0 0 0 0 -1 -1 1 1 1 1 -1T�+2 1 0 0 0 0 -1 -1 1 1 -1 -1 10 1 -1 -1 1 -1 1 -1 1 0 0 01 -1 -1 1 1 0 0 0 0 -1 1 -1T+�1 0 1 -1 1 -1 1 -1 -1 1 0 0 0-1 -1 -1 -1 -1 0 0 0 0 -1 1 1-1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1T+�2 1 0 0 0 0 -1 -1 -1 -1 1 1 10 1 -1 1 -1 -1 1 1 -1 0 0 01 -1 -1 -1 -1 0 0 0 0 1 -1 -1A��1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1E�� 1 -2 -2 2 2 1 1 -1 -1 -1 -1 11 0 0 0 0 -1 -1 1 1 -1 -1 1T��2 0 1 -1 -1 1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 10 0 0 0 0 -1 1 -1 1 0 0 0loop shape #4A++1 1 1 1 1T++2 1 -1 -1 11 -1 1 -1-1 -1 1 1A+�2 1 -1 -1 1T+�1 1 1 -1 -11 -1 1 -11 1 1 1loop shape #5A++1 1 1 1E++ 2 -1 -10 1 -1T+�1 0 0 10 1 01 0 0



E.3. Wave funtions of glueball operators 109

loop shape #6A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 -2 -2 -2 -2 1 1 1 1 1 1 11 0 0 0 0 -1 -1 -1 -1 1 1 1T++2 0 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 -1 1 10 0 0 0 0 -1 1 1 -1 0 0 0T�+1 0 1 -1 -1 1 1 -1 1 -1 0 0 0-1 -1 -1 1 1 0 0 0 0 1 -1 1-1 0 0 0 0 -1 -1 1 1 1 1 -1T�+2 1 0 0 0 0 -1 -1 1 1 -1 -1 10 1 -1 -1 1 -1 1 -1 1 0 0 01 -1 -1 1 1 0 0 0 0 -1 1 -1T+�1 0 1 -1 1 -1 1 -1 -1 1 0 0 0-1 -1 -1 -1 -1 0 0 0 0 -1 1 1-1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1T+�2 1 0 0 0 0 -1 -1 -1 -1 1 1 10 1 -1 1 -1 -1 1 1 -1 0 0 01 -1 -1 -1 -1 0 0 0 0 1 -1 -1A��1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1E�� 1 -2 -2 2 2 1 1 -1 -1 -1 -1 11 0 0 0 0 -1 -1 1 1 -1 -1 1T��2 0 1 -1 -1 1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 10 0 0 0 0 -1 1 -1 1 0 0 0



110 Appendix E. The ubi point group Oh
loop shape #7A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 2 -1 -1 -1 -1 -1 -1 -1 -1 2 2 20 1 1 1 1 -1 -1 -1 -1 0 0 0T++2 1 0 0 0 0 0 0 0 0 -1 -1 10 0 0 0 0 -1 1 -1 1 0 0 00 -1 -1 1 1 0 0 0 0 0 0 0T�+1 1 1 -1 -1 1 0 0 0 0 1 -1 -1-1 0 0 0 0 -1 1 1 -1 1 -1 10 -1 1 -1 1 -1 -1 1 1 0 0 0T�+2 0 1 -1 1 -1 -1 -1 1 1 0 0 0-1 1 -1 -1 1 0 0 0 0 -1 1 11 0 0 0 0 -1 1 1 -1 -1 1 -1A+�2 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1E+� 0 1 -1 -1 1 1 -1 -1 1 0 0 02 1 -1 -1 1 -1 1 1 -1 2 -2 -2T+�1 0 0 0 0 0 1 1 -1 -1 0 0 00 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 1T��1 1 1 1 1 1 0 0 0 0 1 1 11 0 0 0 0 -1 -1 -1 -1 -1 -1 10 1 1 -1 -1 1 -1 1 -1 0 0 0T��2 0 1 1 -1 -1 -1 1 -1 1 0 0 01 -1 -1 -1 -1 0 0 0 0 1 1 11 0 0 0 0 1 1 1 1 -1 -1 1
loop shape #10A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 2 -1 -1 -1 -1 20 1 -1 1 -1 0E++ 0 1 -1 -1 1 0-2 1 1 -1 -1 2T+�1 0 0 1 0 1 00 1 0 1 0 01 0 0 0 0 1T+�2 1 0 0 0 0 -10 0 1 0 -1 00 -1 0 1 0 0



E.3. Wave funtions of glueball operators 111
loop shape #12A++1 1 1 1 1 1 1 1 1 1 1 1 1A++2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1E++ 2 -1 -1 -1 -1 2 -1 -1 2 -1 -1 20 1 1 -1 -1 0 1 -1 0 1 -1 0E++ 0 1 1 -1 -1 0 -1 1 0 -1 1 0-2 1 1 1 1 -2 -1 -1 2 -1 -1 2T++1 0 0 0 1 -1 0 0 1 0 0 -1 00 -1 1 0 0 0 1 0 0 -1 0 0-1 0 0 0 0 1 0 0 -1 0 0 1T++2 1 0 0 0 0 -1 0 0 -1 0 0 10 0 0 -1 1 0 0 1 0 0 -1 00 -1 1 0 0 0 -1 0 0 1 0 0T+�1 1 0 0 0 0 -1 1 0 0 -1 0 00 0 0 -1 1 0 0 0 1 0 0 10 1 1 0 0 0 0 1 0 0 -1 0T+�1 0 1 -1 0 0 0 0 0 -1 0 0 11 0 0 0 0 1 0 1 0 0 1 00 0 0 1 1 0 1 0 0 1 0 0T+�2 0 1 1 0 0 0 0 -1 0 0 1 01 0 0 0 0 -1 -1 0 0 1 0 00 0 0 1 -1 0 0 0 1 0 0 1T+�2 0 0 0 1 1 0 -1 0 0 -1 0 00 1 -1 0 0 0 0 0 1 0 0 -1-1 0 0 0 0 -1 0 1 0 0 1 0
loop shape #13A++1 1 1 1 1 1 1E++ 1 1 1 -2 -2 1-1 1 1 0 0 -1T�+2 0 0 0 1 -1 00 -1 1 0 0 0-1 0 0 0 0 1T+�1 0 1 -1 0 0 01 0 0 0 0 10 0 0 1 1 0A��2 1 -1 -1 1 -1 -1E�� 1 1 1 0 0 -11 -1 -1 -2 2 -1



112 Appendix E. The ubi point group Ohloop shape #14A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 -2 -2 -2 -2 1 1 1 1 1 1 11 0 0 0 0 -1 -1 -1 -1 1 1 1T++1 0 1 -1 -1 1 -1 1 -1 1 0 0 0-1 1 1 -1 -1 0 0 0 0 1 -1 11 0 0 0 0 -1 -1 1 1 -1 -1 1T++2 1 0 0 0 0 1 1 -1 -1 -1 -1 10 -1 1 1 -1 -1 1 -1 1 0 0 0-1 -1 -1 1 1 0 0 0 0 1 -1 1T++2 0 1 -1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 -1 1 10 0 0 0 0 -1 1 1 -1 0 0 0A+�2 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1E+� 1 0 0 0 0 -1 -1 1 1 -1 -1 1-1 -2 2 -2 2 -1 -1 1 1 1 1 -1T+�1 1 0 0 0 0 0 0 0 0 -1 1 -10 0 0 0 0 -1 1 -1 1 0 0 00 1 1 1 1 0 0 0 0 0 0 0T+�1 0 1 1 -1 -1 -1 1 1 -1 0 0 01 -1 1 1 -1 0 0 0 0 1 -1 -11 0 0 0 0 1 1 1 1 1 1 1T+�2 1 0 0 0 0 -1 -1 -1 -1 1 1 10 -1 -1 1 1 -1 1 1 -1 0 0 01 1 -1 -1 1 0 0 0 0 1 -1 -1loop shape #15A++1 1 1 1E++ 2 -1 -10 1 -1T+�1 0 0 10 1 01 0 0loop shape #16A++1 1 1 1 1 1 1A++2 1 1 1 -1 -1 -1E++ 2 -1 -1 -1 -1 20 1 -1 1 -1 0E++ 0 1 -1 -1 1 0-2 1 1 -1 -1 2T��1 0 1 0 0 0 11 0 0 0 -1 00 0 -1 -1 0 0T��2 0 0 1 -1 0 00 -1 0 0 0 11 0 0 0 1 0



E.3. Wave funtions of glueball operators 113loop shape #17A++1 1 1 1 1 1 1E++ 2 -1 -1 -1 -1 20 1 1 -1 -1 0T++2 1 0 0 0 0 -10 0 0 -1 1 00 -1 1 0 0 0T��1 1 1 1 0 0 11 0 0 -1 -1 -10 1 -1 1 -1 0T��2 0 1 -1 -1 1 01 -1 -1 0 0 11 0 0 1 1 -1

loop shape #19A++1 1 1 1 1 1 1E++ 2 -1 -1 -1 -1 20 1 1 -1 -1 0T++2 1 0 0 0 0 -10 0 0 -1 1 00 -1 1 0 0 0A+�2 1 1 -1 -1 1 -1E+� 0 1 -1 1 -1 0-2 1 -1 -1 1 2T+�1 0 0 0 1 1 00 1 1 0 0 01 0 0 0 0 1
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loop shape #21A++1 1 1 1 1 1 1 1 1 1 1 1 1E++ 1 1 1 1 1 -2 -2 -2 -2 1 1 1-1 1 1 1 1 0 0 0 0 -1 -1 -1T++2 0 0 0 0 0 1 1 -1 -1 0 0 00 -1 1 1 -1 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 1 -1 1T�+1 1 0 0 0 0 1 -1 1 -1 1 -1 -10 -1 -1 1 1 -1 1 1 -1 0 0 0-1 -1 1 -1 1 0 0 0 0 1 1 -1T�+2 1 -1 1 -1 1 0 0 0 0 -1 -1 11 0 0 0 0 -1 1 -1 1 1 -1 -10 -1 -1 1 1 1 -1 -1 1 0 0 0T+�1 1 0 0 0 0 1 1 -1 -1 -1 1 -10 -1 1 1 -1 1 1 1 1 0 0 01 1 1 1 1 0 0 0 0 1 1 1T+�2 1 -1 -1 -1 -1 0 0 0 0 1 1 1-1 0 0 0 0 1 1 -1 -1 1 -1 10 1 -1 -1 1 1 1 1 1 0 0 0A��2 1 -1 1 -1 1 -1 1 1 -1 -1 -1 1E�� 1 1 -1 1 -1 0 0 0 0 -1 -1 11 -1 1 -1 1 2 -2 -2 2 -1 -1 1T��1 0 1 1 -1 -1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 1 -1 -10 0 0 0 0 -1 1 -1 1 0 0 0



Appendix FColletion of dataF.1 Data from the stati potential� �t range V0 � � �2=NDF3.400 2 - 6 0.7805(7) -0.251(9) 0.0629(13) 1.023.150 2 - 5 0.820(15) -0.286(19) 0.0992(27) 0.753.150 2 - 6 0.804(14) -0.264(17) 0.1017(25) 1.032.927 2 - 6 0.812(16) -0.272(20) 0.1606(33) 1.352.860 1 - 4 0.8007(48) -0.2623(33) 0.1885(17) 1.172.860 2 - 4 0.789(38) -0.291(43) 0.1844(72) 1.412.680 1 - 4 0.7766(52) -0.2547(37) 0.2871(15) 0.432.680 2 - 6 0.778(41) -0.256(54) 0.2868(70) 0.652.361 1 - 4 0.615(11) -0.1791(78) 0.6286(37) 0.992.361 2 - 5 0.59(11) -0.15(13) 0.634(22) 1.41Table F.1: Results from orrelated �ts of the form (4.4) to the stati quarkpotentials. The seond olumn indiates the �t range in r and the last twoolumns the value of  from whih r0 is determined through (4.5) and �2 perdegree of freedom, �2=NDF, respetively.
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116 Appendix F. Colletion of data
� r Nop �t range V (r) �2=NDF3.400 1 5 2 - 6 0.5874(2) 0.762 5 2 - 6 0.7804(5) 2.193 5 3 - 6 0.885(2) 1.274 3 3 - 6 0.969(3) 1.245 4 2 - 6 1.046(4) 0.916 4 2 - 5 1.116(8) 0.387 3 3 - 6 1.17(2) 0.183.150 1 5 3 - 5 0.6405(3) 0.772 4 2 - 6 0.8756(5) 0.633 5 2 - 6 1.022(2) 0.434 3 2 - 5 1.147(2) 0.155 3 2 - 6 1.258(3) 0.846 3 2 - 6 1.38(1) 1.082.927 1 4 2 - 7 0.7032(2) 0.422 3 2 - 7 0.9969(5) 0.653 3 2 - 7 1.202(2) 0.564 4 2 - 5 1.383(5) 0.315 3 2 - 7 1.560(8) 0.816 3 2 - 5 1.71(2) 0.827 2 2 - 6 1.92(3) 1.282.860 1 3 2 - 4 0.7267(4) 1.502 3 1 - 4 1.047(1) 0.563 4 1 - 4 1.278(2) 0.684 2 2 - 4 1.488(5) 0.305 3 2 - 4 1.67(2) 0.682.680 1 4 2 - 6 0.8091(3) 0.212 4 2 - 6 1.2231(9) 0.983 4 2 - 6 1.553(3) 0.334 3 1 - 5 1.862(3) 0.335 2 2 - 6 2.15(3) 0.896 2 2 - 5 2.51(8) 0.142.361 1 3 2 - 5 1.0641(6) 0.332 3 1 - 6 1.783(1) 0.313 2 1 - 5 2.443(4) 0.754 2 1 - 6 3.09(2) 0.845 1 1 - 5 3.73(6) 2.316 1 1 - 6 4.5(3) 0.44Table F.2: Potential values extrated from �ts of the form Z(r) exp(�tV (r)) tothe ground state of the Wilson loop orrelators. Note that t0 = 1 and t1 = 2was hosen in all ases. The olumn entitled with Nop denotes the number ofoperators kept after the �rst trunation.



F.2. Data from the glueball simulations 117F.2 Data from the glueball simulationsChannel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 6 1 - 4 0.79 0.836(23)0/1 30 1 - 4 0.54 0.835(20)E++ 1/2 11 1 - 4 0.03 1.233(48)8 1 - 4 0.19 1.271(34)0/1 60 1 - 4 0.02 1.232(23)T++2 1/2 5 1 - 4 0.40 1.234(28)7 1 - 4 0.16 1.202(31)0/1 48 1 - 4 1.16 1.247(21)A�+1 1/2 3 1 - 3 0.24 1.395(86)0/1 15 1 - 3 0.12 1.458(52)15 2 - 4 0.10 1.38(20)E�+ 1/2 3 1 - 3 0.34 1.681(72)T�+2 1/2 4 1 - 3 0.09 1.631(72)T+�1 1/2 8 1 - 3 2.49 1.64(16)6 1 - 3 0.17 1.76(10)0/1 25 1 - 3 0.07 1.654(55)Table F.3: Results from �ts to the � = 3:40 glueball orrelators on the 144lattie obtained from the large simulation.Channel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 5 1 - 3 0.50 0.831(33)2/3 3 1 - 3 0.50 0.839(32)0/1 7 1 - 3 0.94 0.813(27)Table F.4: Results from �ts to the � = 3:40 glueball orrelators on the 144lattie obtained from the small simulation where only �ve loop shapes weremeasured on �ve smearing shemes.



118 Appendix F. Colletion of data
Channel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 5 1 - 3 0.61 1.034(33)2 - 3 0.00 1.10(10)1 - 4 2.02 1.032(32)2 - 4 1.07 1.12(11)0/1 25 1 - 4 1.62 1.017(28)2 - 4 0.02 1.119(92)E++ 1/2 4 1 - 3 1.26 1.534(62)0/1 48 1 - 3 1.41 1.455(45)T++2 1/2 4 1 - 3 0.68 1.609(55)0/1 48 2 - 4 1.32 1.83(23)A�+1 1/2 3 1 - 3 0.84 1.65(18)E�+ 1/2 3 1 - 3 0.00 1.97(20)0/1 15 1 - 3 0.09 2.06(16)T�+2 1/2 5 1 - 3 0.00 1.39(27)0/1 22 1 - 3 0.00 1.92(11)T+�1 1/2 4 1 - 3 2.70 2.10(18)0/1 25 1 - 3 0.05 2.04(12)Table F.5: Results from �ts to the � = 3:15 glueball orrelators on the 124lattie.
Channel t0=t1 Nop �t range �2=NDF energiesA++1 1/2 3 1 - 4 0.02 1.411(96)2 - 4 0.02 1.40(38)0/1 25 1 - 4 0.56 1.378(80)2 - 4 0.36 1.50(40)Table F.6: Results from �ts to the � = 2:86 glueball orrelator on the 104lattie. Only �ve loop shapes were measured on 5 di�erent smearing shemes.
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