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Chapter 1

Introduction and summary

Quantum chromodynamics (QCD) has been the generally accepted theory of
strong interactions over the last 20 years. However, basic features of non-
perturbative low-energy QCD physics, such as the spectrum or the structure
of hadrons, have proven to be notoriously difficult to calculate.

One way of doing non-perturbative calculations is by using a discrete space-
time lattice as an ultraviolet regulator [1]. The QCD action is discretized by
replacing space-time integrals with sums and derivatives with finite differences.
Then the path integral defining the field theory can be evaluated numerically
using for example Monte Carlo techniques. The main problem for such numer-
ical lattice calculations, however, is the control of lattice artifacts which are
introduced through the finite lattice spacing a.

The standard discretization of the QCD action is the Wilson gauge action in
the pure gauge sector and the Wilson Dirac action in the fermionic sector. These
discretized actions introduce errors of O(a?) and O(a), respectively, which are
large when the lattice spacing is larger than o ~ 0.1 fm. On the other hand,
typical maximal lattice sizes which can be simulated in quenched QCD with
high statistics on computers in the 10 GFLOPS range are around 323 x 64. For
full QCD this marks the maximal lattice size for obtaining reliable results even
with the most powerful TFLOPS-class computers like CP-PACS and QCDSP
currently available to the lattice community. Reflecting the fact that the needed
physical lattice sizes are around L ~ 2.0 — 3.0 fm in order to avoid finite vol-
ume effects, the smallest lattice spacing accessible with reasonable effort is of
the order of @ ~ 0.1 — 0.2 fm. These observations suggest the use of improved
discretizations of lattice actions, for which finite lattice spacing errors are re-
moved or at least dramatically reduced. This can be achieved by systematically
introducing new irrelevant interactions into the lattice actions. Among the
approaches proposed, there are methods using perturbatively calculated correc-
tion terms in order to improve the lattice gauge action beyond O(a?), like the
Symanzik program or the meanfield and tadpole improvement approach.

An entirely different approach is suggested by Hasenfratz and Niedermayer
[2], namely to use perfect lattice actions, which are completely free of lattice arti-
facts. According to Wilson’s renormalization group (RG) theory such quantum
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perfect actions follow the renormalized trajectory under repeated RG transfor-
mation steps and describe the long-distance physics of the theory properly at
any finite lattice spacing. The RG trajectory runs into the fixed point (FP)
of the RG transformation in the continuum and forms the FP action. The FP
action at finite coupling values is classically perfect, that is, it reproduces all
the physical properties of the classical action in the continuum at finite lat-
tice spacing, and is thought to be a very good approximation to the quantum
perfect action. As was pointed out in [2], the determination of the classically
perfect FP action in the continuum limit reduces to a saddle-point problem for
asymptotically free theories. This approach was successfully applied to the two-
dimensional non-linear o-model [2, 3] and the two-dimensional CP? model [4].
For the SU(3) gauge theory the classically perfect FP action was constructed
and tested in [5, 6, 7, 8] and the ansatz was extended to include FP actions for
fermions as well [9, 10]. In the case of SU(2) gauge theory the FP action was
constructed in [11, 12, 13], and its classical properties were tested on classical
instanton solutions, both in SU(2) and SU(3) [14]. In this context, the question
arises whether one can find a simple but flexible parametrization which is still
easy to simulate. The need for a new parametrization which can describe the
FP action arbitrarily precise becomes even more urgent regarding the recent
developments in the fermionic sector, where the FP Dirac operator was shown
to fulfill the Ginsparg-Wilson relation assuring nice properties related to chiral
symmetry on the lattice [15, 16]. In view of the computational cost related to the
FP Dirac operator (inversion, determinant), the expense for a well parametrized
FP gauge action becomes almost negligible and an additional effort in finding
an improved parametrization of the FP gauge action is justified. It is mainly on
the background of these considerations that the present work has to be seen.

The new parametrization on which we report in this work has a much richer
structure and is much more flexible than the ones previously studied. However,
using a more complex parametrization naturally incorporates the danger of over-
shooting and doing things wrong. Therefore the main part of the work is devoted
to study the properties of the parametrized FP action in order to assure that
no instabilities are introduced through the more complex parametrization. In
addition, one would like to have unquestionable confidence in the parametrized
FP action for the whole range of coarse lattice spacings at which the action will
be used in future applications.

Additionally, one would like to produce interesting physical results using a
very different formulation of lattice gauge theory in order to confirm universal-
ity. Universality is the generally accepted assumption that in the continuum
limit, where the lattice spacing goes to zero, the physically meaningful quanti-
ties do not depend on the actual discretization, but contain only a few relevant
parameters.

The work presented here has been mostly accomplished in collaboration with
Philipp Riifenacht and Ferenc Niedermayer. In the following we give an outline
of the work and summarize the main results.

In chapter 2 we present the construction and parametrization of a FP gauge
action on the lattice starting from the analytically calculated couplings of the
FP action in the quadratic approximation, where care was taken not to vio-



late the O(a?) Symanzik conditions. Emphasis is laid on how the FP action is
parametrized at lattice spacings suitable for performing simulations on coarse
lattices and it is pointed out that the parametrization respects approximate
scale invariance of instanton solutions. We briefly comment on the computa-
tional cost of the parametrized FP action and, in this context, on its usefulness
and importance in possible practical applications. Some technical details on
how O(a?) and O(a*) Symanzik conditions can be calculated analytically are
relegated to appendix A, while appendix B contains details on how to put sin-
gle instanton solutions on a periodic lattice and on the process of the falling
through the lattice of such classical instanton solutions.

Chapter 3 deals with the finite temperature deconfining phase transition in
pure gauge theory and the determination of the critical temperature T.. Some
effort is spent on how finite temperature is introduced in lattice gauge theory in
a clean way and how Polyakov loop correlators figure as an order parameter for
the phase transition. For the purpose of subjecting the parametrized FP action
to scaling tests we determine its critical couplings (. on lattices with temporal
extensions N, = 2,3 and 4. For each N, we perform simulations on several
lattices for a finite size scaling study. Emphasis is put on the error calculation
and estimation of the critical couplings. Technical details on the Ferrenberg-
Swendsen reweighting used for the determination of the critical couplings are
postponed to appendix C, where the machinery is set up and tested on the
two-dimensional Ising and 10-state Potts model.

In chapter 4 the parametrized FP action is subject to several scaling tests.
Using spatially smeared Wilson loops we measure the static quark-antiquark
potential at various values of the gauge coupling and examine its scaling behav-
ior. From the potentials we extract the commonly used reference scale ry and
an effective string tension o in order to check the scaling behavior of the renor-
malization group invariant quantities roT., T./+/o and roy/o. Despite the fact
that the determination of the reference scale rg is hampered by systematic am-
biguities even at modest lattice spacings around a ~ 0.1 fm, when different but
equivalent methods are applied, we observe excellent scaling of the parametrized
FP action on the one percent level down to coarse lattice spacings of around
a ~ 0.33 fm. Details on variational techniques and correlated fits, which are
employed for extracting potential energies from correlation functions of Wilson
loops, can be found in appendix D.

In the following the parametrized FP action is extensively tested on the glue-
ball spectrum in chapter 5. We describe the construction of glueball operators
from Wilson loops up to length eight and we review, in the context of glueballs,
some aspects of representation theory in general and of the cubic group in par-
ticular. We perform several large simulations and measure the glueball spectrum
in all 20 symmetry channels. However, due to the coarse lattice spacings, we are
able to resolve only a few lowest lying glueball masses. The lowest lying 0*+
channel shows particularly large cut-off effects, when measured with the Wil-
son gauge action, and therefore provides an excellent candidate for testing the
improvements achieved with the parametrized FP action. Indeed, we observe
much reduced lattice artifacts as compared to the Wilson gauge action even at
moderate lattice spacings between a ~ 0.10 — 0.18 fm and the parametrized FP
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action shows a perfect scaling behavior. Performing the continuum limit for this
channel we obtain an estimate of 1627(83) MeV for the 07" glueball mass and
2354(95) MeV for the 2+ glueball mass'.

The last chapter finally contains some general conclusions and prospects for
the future.

LOnly the 0T+ value represents a continuum extrapolation, while the 2+ value corre-
sponds to the one measured at a lattice spacing of a = 0.10 fm.
g



Chapter 2

A new parametrization of
the FP action for SU(3)
lattice gauge theory

2.1 Introduction

While the FP action can be calculated numerically to arbitrary precision in
principle, one has to resort to an approximate parametrization of the FP action
in practice due to limited computer power. It turns out, that finding an appro-
priate parametrization is not an easy task.

In this chapter we present a new ansatz for the parametrization which is
very general and flexible, and which allows to parametrize the FP action using
more and more couplings without any further complications. Nevertheless, it
is still easy to handle in contrast to earlier attempts. The approach we use is
building simple loops (plaquettes) from single gauge links as well as smeared
links. In this manner we are able to reproduce the classical properties of the
FP action excellently.

The new ansatz is motivated by the success of using fat links in simulations
with fermionic Dirac operators [17, 18, 19]. Fat links are gauge links, which are
locally smeared over the lattice. In this way the unphysical short-range fluc-
tuations inherent in the gauge field configurations are averaged out and lattice
artifacts are reduced dramatically [20]. It is mainly in view of possible future
applications of the FP gauge action in connection with FP Dirac operators that
a new and more accurate parametrization of the FP action is undertaken.

Earlier parametrizations of FP actions were based on powers of the traces
of loop products along generic closed paths [6]. Restricting the set of paths for
production runs to loops of length & or less and fitting in a 2 hypercube, one is
still left with 28 topologically different loops, some of them having a multiplicity
as large as 384. In addition, it turned out that the quality of the parametriza-
tion of the FP action did not improve upon enlarging the set beyond the 12
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most important loop paths. Presumably this is an indication of the fact that
loop paths beyond length 8 are important for an accurate parametrization of the
FP action. However, when extending this earlier ansatz beyond Wilson loops
of length 8, it becomes nearly impossible to keep track of all topologies and
multiplicities, and the computational overhead is unaffordable. That such an
extension is needed is evident also from studies of topology with the FP gauge
action [14, 13], where it became clear that at least one operator of length eight
has to be included. Such an extension, however, already introduces a computa-
tional overhead factor of 35-225 compared to the Wilson action.

The new parametrization presented here provides a way around these prob-
lems. Although the computational overhead is still considerable, the ansatz is
flexible enough to easily respect scale invariance of instanton solutions and is
therefore expected to describe the classical and topological properties of the
pure gauge theory properly. Equally important is the capability of the new
parametrization to be extendable without further complications and with only
a slight additional effort in order to describe the FP action more and more ac-
curate.

The rest of this chapter is organized as follows. In the first section we will
very briefly review the essential ingredients forming the FP action approach
without giving arguments on its working mechanism. In section 2.3 we will
present the general ansatz for the parametrization and then calculate the cou-
plings of the FP action in quadratic approximation while taking care of the
O(a*) Symanzik conditions in section 2.4. In section 2.5 we will explain in detail
the construction of a parametrized FP action suitable for simulations on coarse
lattices in physically interesting regions. We will check that the parametrization
respects approximate scale invariance of instanton solutions. It is pointed out
that the action is especially suited for the use in Monte Carlo simulations, since
we are not only parametrizing the FP action values but also the derivatives
with respect to the gauge fields as well. Finally, we add some remarks about
the computational overhead of the parametrized FP action in the last section
and give an estimation of its usefulness in possible applications.

2.2 The FP action

We consider SU(N) pure gauge theory! in four dimensional Euclidean space
defined on a periodic lattice. The partition function is defined through

Z(B) = /dUe—MU), (2.1)

where dU is the invariant group measure and SA(U) is some lattice regular-
ization of the continuum action. We can perform a real space renormalization
group transformation (RGT),

AV /dU exp —B(A(U) + T(U, V), (22)

IThe following equations are given for general N, although the numerical analysis and
simulations are done for SU(3).
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where V' is the blocked link variable and T'(U, V) is the blocking kernel defining
the transformation,

TU.V) =5 O (ReTr(V(np)QL(ns)) = A7) (2.3)

ne,u

Here, Q,(ng) is a N x N matrix representing some mean of products of link
variables U, (n), connecting the sites 2np and 2(ng + 1) on the fine lattice and
./\/'5 is a normalization constant ensuring the invariance of the partition function.
By optimizing the averaging function in (), and the parameter &, it is possible to
obtain an action on the coarse lattice, which has a short interaction range. Such
an optimization has been done and we refer to [8] for the explicit form of the
RGT block transformation. The main idea of the RGT III block transformation
is that, instead of using just simple staples, one additionally builds ’diagonal
staples’ along the planar and spatial diagonal directions orthogonal to the link
direction. In this way one achieves that each link on the fine lattice contributes
to the averaging function.

On the critical surface at 8 — oc equation (2.2) becomes a saddle point
problem representing an implicit equation for the FP action, AT,

AP (V) = r{n{}r}l {A"P(U)+T(U,V)}. (2.4)

The normalization constant in the blocking kernel, ./\/'f, becomes in the limit
B = o

N>® = max {ReTr(WQuh}. 2.5

= ymax {ReT(WQu')} (25)

The FP equation (2.4) can be studied analytically up to quadratic order

in the vector potentials [8]. However, for solving the FP equation on coarse

configurations with large fluctuations one has to resort to numerical methods,

and a sufficiently rich parametrization for the description of the solution is
required.

2.3 The parametrization

The approach we use for the parametrization is building simple loops (plaque-
ttes) from single gauge links as well as from smeared links. The smeared links
are built out of staples of gauge links and depend on the plane of the plaquette
to which they are contributing.

Let us introduce the notation Sff’) (n) for the sum of two staples of gauge
links in direction y in the pv-plane?:

S (n) = Uy(n)Uu(n + 2)UJ (n + 1)
+Ul(n —)U,(n—2)U,(n -0+ ). (2.6)

2Following the notation introduced in [21] this is equivalent to S‘(f"'), where the subscript
denotes the direction of the staple and the superscript specifies the plane puv and the parity
in v.
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We shall use besides the usual symmetric smearing also a non-symmetric
smearing. For the symmetric smearing define

Q) = £ 3 8V (m) - Uy(n) (27)
AFp
and
z,(n) = ReTr (QZ(n)UZ{(n)) . (2.8)

To build a plaquette in the uv-plane from smeared links it is convenient to
introduce asymmetrically smeared links. First define®

v 1 v 1
QL) =7 Z SL(LA) +n(a:u)5,§ N - <1 + 5’7(%)) Uy (2.9)
AFp,v

Using these matrices we build the asymmetric smeared links
W =U, +e1(2,)QY) + e2(2,)QVULQY) + ... (2.10)

Here n(x), ¢;(x) are polynomials with free coefficients, to be determined later
by a fit to the FP action,

(@) =0 +nWa, +nPa) + .. (2.11)

and
ci(z,) = cl(.o) + cl(.l):cu + c@xi +.... (2.12)
These asymmetrically smeared links are no longer elements of the SU(3)
gauge group, but they can be projected back to the nearest element in the
SU(3) gauge group. However, the projection is expensive for the use in actual
simulations and in addition our numerical studies have shown that this is not
really necessary but reduces the degrees of freedom in defining the action, such
that for larger fluctuations the FP action cannot be fitted accurately enough.
We will thus use the smeared links W,E") as they are.
From these asymmetrically smeared links we construct a ’smeared plaquette’
variable
wuy =ReTr (1-Wp), (2.13)

and the ordinary Wilson plaquette variable

U =ReTr (1 -UB))., (2.14)
where
WrL(n) = W ()W (n + )W (n + 0)WM (n), (2.15)
and
UPL(n) = Uu(n)U, (n + U} (n + 2)UJ (n). (2.16)

3The argument n is suppressed in the following.
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Finally, the parametrized action has the form

A[U] = % Z f(uuuawuu) s (217)

u<v

where we choose a polynomial in both plaquette variables,
.f(u: U)) Zpklukwl
ki

= piou + porw + paou® + privw + poaw® + ... . (2.18)

Again, the coefficients py; are free parameters and will be determined later, so
that the FP action is approximated closely.

2.4 The quadratic approximation

The couplings of the FP action can be calculated analytically in the quadratic
approximation [6, 8]. By fitting the leading order nonlinear parameters n(®)
cﬁo),cgo) and p1g,po1 to the quadratic part of the FP action we can check the
flexibility and the quality of the parametrization. Of course every (approximate)
parametrization introduces O(a?) artifacts and violates the nice properties of
the FP action, however, one can exploit the freedom in the parametrization
to correct for this and to explicitly fulfill the Symanzik (‘on-shell’) conditions*
up to O(a?) or even O(a?). In this way the linear parameters pyo and po;
are determined as functions of the rest by the norm and the O(a?) Symanzik
condition. The fit in the three nonlinear parameters yields the following result:

3

n® =0082, %=0282, ¥ =0.054, (2.19)
with the corresponding plaquette coefficients
P1o = —03681, Po1 = 0.6292. (220)

It is interesting to note that for the present ansatz of the parametrization the
second O(a?) Symanzik condition is automatically fulfilled. The action, where
only the leading parameters are present, is denoted by Ag(U) and is a good
approximation to the FP action for sufficiently small fields.

Checks involving simple configurations with only one or two non-trivial links
sufficiently close to unity, show that A(U) approximates indeed well the FP
action to quadratic order, in fact the relative error between Ay(U) and the true
FP action value is found to be less than 2%.

For simulations with the FP action in physically interesting regions it is
important to have a parametrization for gauge fields on coarse lattices. We
turn to this problem in the next section.

2.5 The FP action on rough configurations

The parametrization of the FP action on strongly fluctuating fields is a diffi-
cult and delicate problem. In this section we describe briefly the procedure of

4For details on the O(a?) and O(a?) Symanzik conditions see appendix A.
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obtaining a parametrization, which uses only a compact set of parameters, but
which describes the FP action still sufficiently well for the use in actual simula-
tions. We also provide some details about the fitting procedure used.

Obtaining the FP action values on rough configurations involves a multi-grid
procedure. One starts with configurations {V'} on a coarse lattice and applies
inverse blocking steps to obtain finer configurations {U(”)}, n=12...

(Vs Uy 5 (UP) — .. s {UW}, (2.21)

In each step the fluctuations of the fields are typically reduced by a factor of
30 to 40 and after a sufficiently large number of steps k the fine configuration
{U®™} is so smooth that any discretization of the gauge action can be used on
it. In practise, however, memory and time prevents from doing more than one
step at once and one has to resort to building the FP action iteratively.

Starting on the finest level with configurations for which the quadratic ap-
proximation Ay is appropriate, one ends up with physically interesting config-
urations and a suitable parametrization of the FP action after three or four
steps. On each intermediate level one has to find a new parametrization which
describes the FP action accurately enough and it shows that one has to include
more and more parameters on each level to do so. However, since these interme-
diate FP actions are not intended to be used in simulations, one can be generous
with respect to the numbers of parameters included. This is no longer the case
for the last step, where we restricted ourselves to the smallest possible set of
parameters, which still meets our requirements for the accuracy of the action.

During this iterative procedure it turned out to be favorable to release from
the O(a?) Symanzik condition and, indeed, it is not clear how important it is in
the presence of large fluctuations. In this sense the final action is only intended
to work in a given range of fluctuations, which, however, covers the physically
interesting fluctuations accessible with todays computer power.

The determination of the coefficients of the intermediate and the final parametriza-
tion is done by minimizing a x2-function involving the derivatives of the gauge
action with respect to the gauge links in a given colour direction a (N, denoting
the number of colours)

SAU)
oUg(n)’

=1,...,4anda=1,...,N>—1, (2.22)

the action values of the FP action on equilibrated configurations and, maybe
somewhat less important, on classical solutions of the FP action. The values to
be fitted are calculated using the information we have about the fine configu-
ration. Fitting the derivatives has the advantage that one single configuration
provides V - (N2 — 1) -4 residues, where V is the volume of the lattice, instead of
just one for the action value. As the inverse blocking involves minimization of
the fine configuration, which is quite expensive, the approach reduces comput-
ing time considerably. In addition what counts in MC simulations are really the
local changes of the action and not the total action value itself, thus the present
FP action is especially suited for the use in MC simulations. However, one has
to keep in mind that not all of the residues are independent from each other and
we carefully checked that enough independent information is included in the fit.
An interesting and important test for the flexibility of the parametrization is
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whether both the requirements for fitting the derivatives and the action values
can be met at the same time and it shows that this is indeed the case.

For addressing questions concerning topology it turned out to be crucial to
include scale-invariant instanton solutions [11, 12, 13, 14]. A good parametriza-
tion of the FP action should also be able to respect approximate scale invariance
of instanton solutions. For this purpose we generated sets of SU(2) single in-
stanton configurations on a 12* lattice with instanton radius p/a ranging from
3.0 down to 1.1 centered in a hypercube, in a cube and in a plaquette®. We
then blocked the configurations down to a 6* lattice to get approximate classical
solutions. In fact it turns out that they are classical solutions of the FP action
for radii larger than p/a ~ 0.88 as can be seen for example from figure 2.1.

14 - 1

1.2 B

04

0.2

0
0.4

Figure 2.1: SU(2) single instanton solutions on a 6% lattice with center of the
instanton at z./a = (2%, 2%, 2%, 2%), a being the lattice spacing on the coarse
lattice. V is the coarse configuration and U denotes the minimized configuration
on the fine lattice. Note, that A¥P(V) = A"P(U) + T(U,V) and that for an
exact classical solution of the FP action one has T'(U, V) = 0.

In figure 2.2 we show how the present parametrization works on the example
of instanton solutions centered in a cube. The solid lines are extrapolations
from finite lattices with L = 4,6, 8 to an infinite lattice. The action values are
expressed in units of the one instanton action value in the continuum, Aj,s =
42,

In the last step we first fitted the derivatives on ~ 50 thermal configura-
tions corresponding to a Wilson critical coupling at N, = 3, 8% ~ 5.4. In
the following the non-linear parameters were kept fixed, while we included in
addition the action values and the derivatives of ~ 75 thermal configurations at
B¥P = 2.8,4.0,7.0 and the action values of the instanton configurations. Since

5For a detailed prescription of how the instanton configurations are generated we refer
to appendix B, where we also add some remarks about the minimization of such solutions,
i.e. the mechanism of the falling through the lattice.
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Figure 2.2: SU(2) single instanton solutions centered inside a spatial cube. The
solid lines are extrapolations to infinite lattice. For the parametrized FP action
we also plot the values of the action on lattices with size L = 4,6,8 as dashed
lines.

the non-linear parameters are kept fixed we use this information only to optimize
in this way the linear parameters.

To assure stability of the fit we employed different checks: first we checked
that the x? was stable on independent configurations, which were not included
in the fit. Secondly, we successively excluded different parts of the fitted data
to check the stability of the data sets and, thirdly, we checked stability under
variation of the relative weights with which the different data sets were included
in the fit. Using high order polynomials of the plaquette variables v and w there
is always the danger of generating non-positive regions in the uw-plane. We
found that this can usually be circumvented by choosing an appropriate set of
linear parameters pg;.

The smallest acceptable set of parameters we found consists of four non-
linear parameters, n(o),cgo),céo),cgo) and fourteen linear parameters py; with
0 < k41 < 4. The values of these parameters are given in table 2.1 and fulfill
the correct normalization. They form the final approximation of the FP action.

It is clear that by restricting ourselves to a small set of parameters we can not
describe all the properties of the FP action accurately enough, but in contrast,
through the truncation in the parameter space we introduce lattice artifacts of
any order. Therefore the approximate FP action will be subjected to a number
of scaling tests in order to ensure the successful and correct parametrization of
the FP action and in order to size possible lattice artifacts. In the following,
when we speak of the FP action in the context of practical applications, we
really mean the parametrized and therefore approximate FP action described
in this chapter.
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(0) (0) (0) (0
n g Cy C3
-0.038445  0.290643 -0.201505  0.084679
Poi 0.442827  0.628828 -0.677790 0.176159

p1; | 0.051944 -0.918625 1.064711 -0.275300
p2i | 0.864881 -0.614357 0.165320

p3; | -0.094366 -0.020693

pa; | 0.022283

Table 2.1: Parameters of the approximate FP action.

2.6 Summary and conclusion

Before we can appreciate the value and usefulness of the new parametrization,
some comments are in order concerning the computational overhead.

We have calculated the expense of the parametrized FP action and com-
pared it to the expense of an optimized Wilson gauge code. The computational
overhead amounts to a factor of 55-60 and comes mainly from computing the
smeared links. Once these links are calculated one can generate (compact)
loops up to arbitrary length just by including more and more powers of the
smeared links. The present parametrization therefore allows to reach an almost
arbitrarily rich parametrization of the FP action with no further complications
whatsoever. In contrast, this was not the case for the older parametrizations,
which were using powers of simple Wilson loops up to a given length, since going
beyond loops of length eight turned out to be impossible in practice. Reflecting
these facts the computational overhead is certainly justified.

Of course, the overhead is a severe drawback for the use of the action in
actual simulations as will be clear in the next chapters. Although the action
shows much reduced lattice artifacts as compared to the Wilson action, it is not
clear if the extra work pays off in pure gauge theory at zero temperature. Indeed,
a fair competition for different actions is to compare results which are obtained
with the same computational effort. Allowing therefore the same amount of
simulation time to the Wilson action one could simulate on lattices which are
around 2.7 times finer than the ones accessible to the FP action at the moment.
This corresponds to a lattice spacing of around a ~ 0.04 fm or a Wilson coupling
BY ~ 6.6, which is already far in the continuum. Of course, it is not clear how
these considerations are modified when the continuum is approached: due to
critical slowing down, missing overlap of simple loop operators with physical
objects, like in the case of glueball operators, the simulation cost is likely to grow
as a~ %, when the lattice spacing is reduced, and the above factor of 2.7 is by
far exaggerating. In particular, it is known that for thermodynamic quantities
the computational effort grows proportional to a~!? suggesting a factor in the
lattice spacing of ~ 1.5 instead. Thus, thermodynamics of SU(3) lattice gauge
theory is surely a field of practical applications for the FP action.

Another remark in favour of the FP action concerns the use of it in connec-
tion with a fermionic FP Dirac operator, i.e. the application of the FP gauge
action in full QCD. In view of the expense for a Dirac operator in dynamical sim-
ulations the overhead coming from the FP gauge action is only a slight drawback
and can easily be afforded. In addition, one knows that FP gauge actions prefer



14 Chapter 2. A new parametrization of the FP gauge action

gauge fields with smaller fluctuations compared to the Wilson gauge action at
the same lattice spacing. Thus inversions of Dirac operators will converge faster
on gauge configurations generated with the FP action thereby compensating the
overhead coming from it.

Recapitulating it is fair to say, that the parametrized FP gauge action in
combination with the FP Dirac operator in QCD simulations opens the inter-
esting possibility to keep chiral symmetry and reduce the cut-off effects at the
same time. In these applications the overhead comes almost entirely from the
Dirac operator, while the overhead from the gauge action is negligible. For ap-
plications in pure gauge theory, however, the use of the parametrized FP gauge
action has to be chosen thoughtfully.



Chapter 3

The deconfining phase
transition in pure
Yang-Mills theory

3.1 Introduction

One of the possible scenarios for the genesis of the universe suggests a Big-Bang,
which created a seething soup of quarks and gluons, the quark-gluon plasma,
just microseconds thereafter. As the universe expanded and energy density and
temperature decreased, the soup cooled down and confined into nucleons, which
in turn formed the nuclei only a few minutes later. To check whether this is
true or not, one can try to free the quarks and gluons from their hadron habitat
and in this way to recreate the early stage of the universe.

There are several strong indications that this quark-gluon plasma has been
seen just recently in heavy ion beam experiments at CERN. By colliding, for
example, nucleon lead beams on a solid lead target, one generates 'Little Bangs’,
small pockets of hot and dense nuclear matter, presumably forming to primordial
quark-gluon plasma. One of the observed signature for the quark-gluon plasma
is the sudden drop in the production of J/v particles. This is due to the fact
that the charge of the constituting charm-quarks are Debye-screened by the sur-
rounding gluons and quarks and the binding into the .J /4 is strongly suppressed.
Another sign, suggesting that the quark-gluon plasma has been observed, is the
excess of light weakly interacting particles like electron-positron pairs. Yet an-
other indication is the increased production of strange particles. Theoretical
considerations predict the deconfining transition temperature of QCD, where
the quarks cease to stick together in hadrons, to be around 180 MeV, roughly
what has been observed by the CERN experiments.

In pure Yang-Mills theory the gluon plasma is expected to form at tempera-
tures above 270 MeV. This small number is rather surprising in view of the fact
that the lowest gluonic excitations are high (around 1.6 GeV), however, it is
for example predicted by non-perturbative calculations on the lattice. We can
therefore use the critical temperature T, of the deconfining phase transition to

15
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determine the physical scale of the lattice computations performed in this work,
and, in addition to its intrinsic importance as a fundamental non-perturbative
prediction, it also provides an excellent quantity to test the accuracy of the
improvement scheme and to study lattice artifacts.

The chapter is organized as follows. We will first spend some effort on how
finite temperature is introduced in lattice gauge theory in a formal and clean
way'. We show that the Polyakov loop correlator figures as an order parameter
for the phase transition and discuss the phase structure of the theory. Then
we will explain the determination of the critical couplings of the parametrized
FP action including details about the simulations, the analysis and the error
estimation. For each N, we perform simulations on several lattices for a finite
size scaling study. The critical temperatures determined here will be subject
to scaling tests in chapter 4. Technical details on the Ferrenberg-Swendsen
reweighting, which is used in the course of calculating the critical couplings,
are relegated to appendix C, where the method is illustrated by means of the
two-dimensional Ising and 10-state Potts model.

3.2 Finite temperature in lattice gauge theory

The Euclidean lattice action for SU(N) Yang-Mills theories is given by

S=-B8> ReTr (U), (3.1)
pl

where Uy, is the plaquette product of the gauge links:
Up = Un (@)U, (& + @)U}z + 9)UJ (@), (3.2)

and the sum in eq. (3.1) is over all plaquettes on the lattice.
The action (3.1) is invariant under local gauge transformations

Uu(z) = 9(2)Uu(2)g™" (z + ). (3-3)

To discuss the physical meaning of the gauge invariance it is convenient to
consider a partial gauge fixing where

U4($) =1. (34)

The remaining degrees of freedom are then the links in spatial directions Uy (Z, t),
k = 1,2,3. Time independent gauge transformations g(Z#) are still allowed by
the condition (3.4). In this gauge one can define the transfer matrix

T(U',U)=expq B ReTr (U,g(f)U,I(f)) + %62 Uyt + %62 Ul
z,k pl pl

(3.5)

IThis section is based on notes which originated in several discussions on finite tempera-
ture gauge theory at the Institute for Theoretical Physics in Bern. I am grateful to Ferenc
Niedermayer for leaving me these notes.
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The symbols U, U’ denote here the sets of links on two neighboring time slices,
t and t + 1, respectively. The summation is over spatial plaquettes in the cor-
responding hyperplanes. The physical meaning of the transfer matrix is that it
describes the evolution of the system in Euclidean time; it can be thought as
exp(—af[) where H is the Hamiltonian of the system. To see the analogy with a
path integral in quantum mechanics, note that the first term in the exponent is
analogous to the kinetic term —5-(z —y)? while the others to —ge(V (z)+V (y)).
In our case they represent the electric and the magnetic energies.

The state of the system is given by a wave function depending on the gauge
links U = {U (%)} and the evolution by one time step is

v(U) - ' (U') = /dUT(U’,U)\II(U). (3.6)
The transfer matrix is invariant under local gauge transformations,
TWU,U)="T(U'",), (3.7)
where g = {g(#)} and
IUK(E) = g(Z)Uk(&)g™" (F + k). (3-8)

Define the operator G(g) which performs a gauge transformation as

(Glo)w) () =¥ (*'U). (3.9)
The reason for having ¢! on the rhs. is that G(g) satisfies then the relation
G(h)G(g) = G(hg)- (3.10)

Relation (3.7) means that the transfer matrix commutes with the operators
of the gauge transformations. One has a set of independent gauge transforma-
tions, each acting only at a given site Z,

G(g) = [[ Gla(@)). (3.11)

and
G(g(@)T = TG(g9(Z)) for any 7. (3.12)

As a consequence, the Hilbert space of states falls into different subspaces. The
states of a given subspace are characterized by some irreducible representation
of SU(N) (e.g. 1, 3, 3, 8, etc. for SU(3)), one for each site #. We shall say
that at a site where the wave function of a given subspace transforms non-
trivially there is an external charge. Since acting by the transfer matrix on
such a state does not change its transformation properties with respect to the
gauge transformations, these charges are static — the gauge dynamics does not
influence them (it does not even rotate them in colour space).
The simplest and most important subspace is that of the gauge invariant
functions,
v 9y = 9O (U), (3.13)

that is
G(g(@)® =@ for any 7. (3.14)
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This is the sector with no external charges.
Define the projector Py defined by

Po = /dgG(g), (3.15)

or equivalently

(Po®) (U) = /dg‘I’ (g’lU) - /dg\I' (oU), (3.16)

where dg = [[;dg(Z). It projects an arbitrary function ¥(U) onto the gauge
invariant subspace.

Consider now the partition function Z(® of the system with no external
charges, at some finite temperature. This is given by the trace of 7™V~ taken in
the subspace of gauge invariant functions. (Here N; is the number of time slices
to which the inverse temperature is divided.) Instead of taking the trace in this
subspace one can calculate the trace of 7N*Py in the whole Hilbert space:

Z" =T (TN) = T (TNPy) = > (UITNPo|U), (3.17)
{U}
where U = {U(Z)} is an arbitrary gauge configuration. The state |U) is de-

scribed by a sharp wave function ¥(U') = dyy, analogously to the states |z) in
quantum mechanics. Using eq. (3.15) we have

zO = >N [ ] de@UITN°U). (3.18)
{tn(@}" 2

In other words, the gauge configuration on the time slice ¢ = 0 coincides with
that on the time slice t = Ny only up to an arbitrary gauge transformation
g = {g(&)}. This is the consequence of projecting onto the subspace with
no external charges. Without the integration over ¢g(#) one would obtain an
expression which is the sum of partition functions for all possible choices of the
external charges. However, this would not be a useful quantity.

Due to the fact that Py7 = TPy and P2 = Py, one can rewrite Z(©) by
introducing an extra (superficial) Py between any two time slices,

Z(O) =Tr (TPOTPO - TPO) = /dUO .. -dUNt—ldgo .. -dgNt—l
T(Ug,goUl)T(Ul,gl Uz) e T(UNtfl,gNt_lUg). (319)

Here Uy for t =0, ..., Ny — 1 denote the set of spatial links {Uy(Z,t),k = 1,2,3}.
Observe that g; = {g(Z,t)} play the role of the temporal gauge links U, (Z, )

between the time slices ¢ and ¢t + 1 since ReTr (Uk(:E’, t)U,I(i:’, t+ 1)) goes into
ReTr (Uk(ir', £) (UL (7t + 1))*) -
ReTr (Uk(f, 1)g(@ + k, UL (7.t + 1)g (4, t)) . (3.20)

This is equivalent to the contribution to the action (3.1) from a plaquette in the
k4 plane if we set g(#,t) = Us(Z,1).



3.2. Finite temperature in lattice gauge theory 19

Consequently, the partition function in the sector with no external charges is
given by the original Wilson action via ), exp(—=S(U)) (without any gauge fix-
ing) and with periodic b.c. on the gauge links in the time direction, Uy (#, Ny) =
Ui (Z,0). The projection onto the gauge invariant subspace is achieved by the
integration over the time components Uy (7, t).

It is important to know how the system responds when external charges are
introduced at a given temperature. Introducing a static Q@ pair at some points
Z and §f means that we restrict the sum defining the partition function to the
subspace of functions which at every point Z' # Z, ¢ transform as a singlet, while
at points i and i as 3,3. The partition function in this sector gives the free
energy of the QQ pair at the relative distance 7@ = Z — 7,

7QQ

Z(0)
The behaviour of the free energy F5 (7, T) for large separations " distinguishes
between confinement and deconfinement at the given temperature T'. For T' <
Tk, in the confining phase, for 7 — oo one has Fy5 — oo, while for T' > T, in
the deconfined phase, Fo5 — const. For the practical definition of this ratio
we need the projection operator onto the fundamental representation at a given
point.

Obviously, a gauge invariant product of links along a closed loop in a given
time slice (e.g. Tr(Up1) of eq. (3.2) as the simplest case) represents an admissible
wave function in the sector with no external charges. It can be shown that it
represents a closed loop of (colour)electric flux. An open string built by links
is expected to describe a state where at the two ends two external charges are
sitting. To see this consider a product of gauge links starting from site # and
ending at

= e Tea(nT)/T (3.21)

U, (U) = (Uk(f)Ul(:E-l- k). ) . (3.22)
The transformation property of this wave function is
(GU)¥a) (U) = Way (") = hh ()P (V)G (3.23)
Define the operators
Pul@) = [ dg(@)9us(2)G9(2)). (3:24)
Using the relation
_ 1
/dggabgcdl = N(sad(sbc (325)
and eq. (3.10) one obtains
" o 1 "
Pﬂb(‘r)Pcd(x) = N(Sbcpad(x)- (326)
The relation
G (h())Pas(F) = hgp (£)Pes(Z) (3.27)

shows that P, (¥) acting on any function picks up the part which transforms
at point # according to the fundamental representation, with index a (for any
given b). Moreover, acting on the wave function in eq. (3.22) one has

1

Pcd(f)‘l’ab = N‘sadlpcb: (328)



20 Chapter 8. The deconfining phase transition in pure Yang-Mills theory

that is P.q(Z) picks up only those functions whose index a at point Z coincides
with its second index d, and transforms it into a function with index ¢, its first
index. Obviously, its trace (apart from the factor 1/N) is the desired projector

PUE) = NPec(E). (3.29)
It satisfies the relations
PRZ)PO(Z) = PO() (3.30)
and
PUD) Vo = Vs (3.31)

For completeness, define an operator which projects onto the appropriate
subspace at point §. For this let

@) = / d9()g~" DG lo(@))- (3.32)

It satisfies similar relations, in particular

L 1
c*d(y)‘l’ab = Nabcq’ad- (333)

The corresponding projector at point 4 is then

POUG) = NPx(7). (3.34)

The projection to the desired subspace where the only external charges are at
sites Z and § is achieved by multiplying the appropriate projectors for each site,

PO =P PG [ Po(2). (3.35)

£,
The partition function in this subspace is then given by

S 1 . 1 5
7QQ _ T (TprQQ) = <7 S TN P2y, (3.36)
()

The 1/N? factor (which is anyhow an unimportant constant factor) is intro-
duced here because the trace is in fact a sum over NV x N different possible
orientations of the external fundamental source in the colour space. We identify
again the integration variables g(%) in the projectors with the links U (Z,t0)
where ty = N; — 1 (or any fixed value). The partition function Z9¢ is given
by integration over the fields Uy (Z,t), Us(Z,t0), keeping Uy (Z,t) = 1 for t # to
with the integrand tr(Us (%, to))tr(U] (¢, to))exp(—=S(U)). Introducing an arbi-
trary time dependent gauge transformation on this configuration one restores
all time like links Uy(Z,t). By this procedure the original TrUy (%, to) term goes
over to the Polyakov loop at #, that is, the ratio in eq. (3.21) is obtained by the

—
3

correlation function of Polyakov loops L(Z)

—ar = (LE) L (@), (3.37)

where
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L(Z) = tr (Us(Z,0)Us(Z,1) ... Us(Z, Ny — 1)) . (3.38)

It is interesting to observe that using PRAPRQ = PRQ and TPRQ = PRAT
one can introduce Uy (Z,t) on all time slices in an alternative way. In this way
one obtains the product of traces,

Tr (Uy(Z,0)) Tr (Us(£,1)) ... Tr (Us(Z, Ny — 1)).. (3.39)

It is easy to see that after integrating over all gauge equivalent configurations
this reproduces the previous answer. Indeed, according to eq. (3.25), on has

N/dgTr (Vg™") Tr (gW) = Tr (VW). (3.40)

This form is, however, not convenient for the use in simulations since it is noisier
than the Polyakov loop, eq. (3.38).

3.3 The phase structure of lattice gauge theory

In this section we will briefly expose the main features of the deconfining phase
transition in pure Yang-Mills theory at finite temperature. Based on the pre-
sentation in the previous section, we will first dwell on the correlation of the
Polyakov loop as the order parameter of the transition, then recall the phase
structure of the theory and at the end discuss the connection with the sponta-
neous breakdown of the center symmetry of lattice gauge theory.

3.3.1 Polyakov loop correlator as the order parameter of
the phase transition

That pure Yang-Mills theory undergoes a phase transition at some temperature
T. was expected already some time ago [22, 23] and the first non-perturbative
lattice determinations of the transition followed shortly after [24]. As is already
clear from the previous section, the phase transition is accompanied by a radical
change in the behaviour of the correlator

(LFLH)), (3.41)
where L(Z) is the Polyakov loop or Wilson line

B
L(#)=Tr Pexp{ig?{ dtA4(Z, 1)}, B = %, (3.42)
0

and the gluon fields satisfy periodic boundary conditions. The simplest lattice
realization of this object may be written as

N,—1
L&) =Tr [[ U@ 1) (3.43)

Physically, L(#) can be interpreted as the world line of a static quark (or a color
source) representing the self-energy of an infinitely heavy quark as explained
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in the previous section. One can conclude that the excess free energy of a
single static quark relative to the absence of the quark is given by the thermal
expectation value of the Polyakov loop,

e~ (Fe(M=Fo(T) = (L(2)) = (L). (3.44)

In the last step we have used translational invariance of the vacuum which allows
one to consider the spatially averaged operator only,

Nr—1
1 : .
L=+ Y T [ Ua@ o). (3.45)
7z t=0

Analogously the correlator of a Polyakov loop and its adjoint one having oppo-
site orientation, contains information about the free energy of a static quark-
antiquark pair,

(L(B)L(0)) = exp{~(Fq(,T) - Fo(T))}. (3.46)
Assuming cluster decomposition at large distances one has

|Z]— 00
— [

(L(B)L'(0)) L. (3.47)
In the pure gauge theory a single colour-triplet charge can not be screened by
dynamical sea quarks in the confined phase and its free energy Fp becomes
infinite causing a vanishing expectation value of L(Z). At large distances the
correlation function decays exponentially,

(L(B)L(0)) ~ exp{~0(T)|Z|/T}, (3.48)

hence the free energy increases linearly with the string tension o(7T') for large
separations signalizing confinement.

On the other hand, in the deconfined phase the free energy of a static quark-
antiquark pair remains finite even at large separations and the Polyakov loop
may acquire a non-vanishing expectation value (L(Z)) # 0. Thence we interpret
the Polyakov loop as an order parameter for the deconfining phase transition in
the pure gauge theory?.

Below the critical temperature we have a confining vacuum with thermal
fluctuations exciting a dilute gas of glueballs, while the high temperature region
is characterized as a gluon plasma phase with freely moving but still interacting
gluons. In this phase static colour charges would be Debye-screened but not
confined. For a deeper understanding in terms of forming flux tubes see for
instance [27, 28].

To complete the physical picture let us shortly touch the full theory includ-
ing dynamical quarks. In full QCD the low temperature phase corresponds
to the usual hadronic QCD vacuum producing a rarefied pion gas, which can
adequately be described by chiral perturbation theory. The high temperature
phase describes a quark-gluon plasma created for example in high energy nuclei

2This is not quite true: strictly speaking only the correlator (3.41) has a physical meaning
and may serve as an order parameter. The phase of the expectation value of (L) is not a
physically measurable quantity [25]. Nevertheless, we will adopt here the traditional viewpoint
[26].



3.8. The phase structure of lattice gauge theory 23

or heavy ion collisions and presumably realized at an early stage of the universe.
For small quark masses the order parameter associated with the phase transi-
tion is the quark condensate (Gg) and the transition is related to the restoration
of chiral symmetry.

For a nice and thorough review on all these topics we refer to [29].

3.3.2 Center symmetry

Usually phase transitions are associated with the spontaneous breakdown of a
global symmetry of the system. This is also the case for lattice gauge theory at
finite temperature.

In addition to local periodic gauge symmetry associated with the colour
gauge group SU(N,), lattice gauge theory also enjoys invariance under a global
unitary transformation of all temporal link matrices Uy (&, t) of a given temporal
hyperplane with fixed ¢ by a an element 2 of the center® Z(N,) of SU(N.),

Us(Z,t) — 2U4(Z, 1) VZ with ¢ fixed. (3.49)

The invariance under this global Z(N.) symmetry is evident from the explicit
form of Wilson’s lattice action,

Swilson =
1 A N
By (1= ~ Re Tr Ui(2)Uj (= +)U (2 +j)U}(x))
1<i<j<3 ¢
5y (1 _ NiRe Tr Uy(@)Us (2 + DU (2 + DU (;@) (3.50)
1<i<3 ¢

but of course also applies for the FP action parametrized using smeared links.
The argument is simple and applies to any local action. This can easily be seen
by considering that any local closed loop must pass a given spatial hypersurface
between ¢t and ¢ + a an even number of times, equally in both possible direc-
tions, and thereby cancelling the extra factors. Although the action and local
observables are invariant under these center transformations, the Polyakov loop
(3.43) is not,

L(%) = 2L(2). (3.51)

As a consequence of this fact, lattice configurations related by the center sym-
metry will occur with equal probability if the ground state of the theory re-
spects the center symmetry. Thus the same number of configurations will con-
tribute to the expectation value of the Polyakov loop the values L with phases
e2mik/Ne | =0,... N,—1, finally causing the expectation value to vanish due to
>, exp(2mik/N.) = 0. As we have seen in the previous section this corresponds
to the low temperature, confining phase of the pure gauge theory with (L) = 0.
Per contra, in the high temperature, deconfining phase with (L) # 0 the center
symmetry is necessarily broken?.

3The center of a group G consists of the subgroup of elements z commuting with all group
elements, i.e. 29271 = g for all geG. In the case of SU(N) being the gauge group, the center
Z(N¢) contains the N, matrices exp{27ik/N.},k=0,...,Nc — 1.

41t goes without saying that for finite volumes the ground state will tunnel between the N,
degenerate vacua and hence force (L) still to be zero. This can be regarded as a consequence



24 Chapter 8. The deconfining phase transition in pure Yang-Mills theory

It can be argued on grounds of the Z(N,.) symmetry that the critical be-
haviour of the SU(N.) pure gauge theory is that of a three dimensional Z(N,)
symmetric spin model with ferromagnetic short range interactions [30, 31, 32,
33, 34]5. This expectation has been confirmed in [37].

As for illustration figure 3.1 shows the restoration of the center symmetry as
the inverse temperature § of the system is decreased below the critical coupling
Bc. Note the tunneling of the system between the degenerate vacua in the
deconfined phase. The phase changes and the coexistence of the two phases are
illustrated in figure 3.2 where we show a typical Monte Carlo time history on a
4x 123 lattice near the critical coupling of the FP action. At the critical coupling
the system flips between the ordered and the disordered phase giving rise to
the clearly visible double peak structure in the probability distributions of the
energy and the order parameter, typical for a first order phase transition. Figure
3.3 shows the probability distributions of the Polyakov loop order parameter,
|L|, and the energy at the critical coupling of the FP action on a 2 x 103 lattice.

Despite this impressive evidence for a first order phase transition one has to
be careful: the characteristic first order phase transition discontinuities in phys-
ical quantities like the Polyakov loop susceptibility xz or the order parameter
are washed away on finite lattices. Nevertheless one may invoke a finite size
scaling analysis of thermodynamic quantities in order to determine the order of
the phase transition. Such an analysis is clearly beyond the scope of the present
work, however, it has been done for example in [38, 39, 26, 40, 37] with clear
evidence for the first order nature of the SU(3) deconfinement phase transition.

3.4 Determination of the temporal scale

Consider the statistical partition function of a quantum mechanical system at
temperature T,

Z(T) =Tre H/T. (3.52)

Here, H is the Hamiltonian of the statistical system and Tr denotes the thermal
trace, i.e. the sum over all states 3 (nle”#/T|n). Using the transfer matrix
approach as outlined in section 3.2 one can obtain a path integral representation
for the partition function. For pure Yang-Mills theory this amounts to

Z= N/DAe‘S(B)[A], (3.53)

where A denotes the gauge fields and N is a normalization constant. The
path integral is carried out over all field configurations satisfying the periodic
boundary conditions A, (#,0) = A, (7, ) and S®)[A] is the finite temperature

of Gauss’ law which forbids a net charge in a finite volume with periodic boundary conditions.
Of course, these changes of phases extending over the entire volume can not be accomplished
in an infinite volume, simply reflecting the fact that in this limit a single charge is no longer
inconsistent with Gauss’ law. Tt is therefore convenient, for any practical purposes, to replace
L by |L|.

5Tn the case of SU(2) one would expect the same critical behaviour as for the three di-
mensional Ising model, which shows a second order phase transition, and indeed excellent
agreement between the critical exponents of the SU(2) Yang-Mills theory and the 3-d Ising
model has been found [35, 36].
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Figure 3.1: Restoration of the center symmetry as the inverse temperature 3
of the system is decreased below the finite volume critical coupling B.(N; =
2) ~ 2.359. The plots show Monte Carlo calculations of the Polyakov loop
order parameter L in the complex plane on a 2 x 6% lattice. Note the tunneling
of the system between the degenerate vacua in the deconfined phase and the
coexistence of the phases near the critical S-value.
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Figure 3.2: Monte Carlo time history of the modulus |L| and the phase § =
arg(L) of the Polyakov loop order parameter L = |L|e?’ on a 4 x 123 lattice at
B = 2.91 near the critical value of the FP gauge action. The noisy regions in the
angle plot indicate time intervals during which the system is in the symmetric
phase where the angle is not well defined. The remaining time is spend in
one of the three broken degenerate phases where the angle takes the values
0 ~ 0,+27/3.

action

B 0
S@4] = 1 / dr / 2 Tr(F,, (7, 7)F (7, 7)), B = 1 (3.54)
2 0 —oo T
Introducing a lattice regularization for (3.53) with lattice spacing a in coordinate
space the correspondence with a classical statistical system is even more evident.
Thus we conclude that the quantum field theory at finite temperature T is
equivalent to a Euclidean field theory on a space-time with compactified time
direction of extension 1/T.
The lattice regularized version of (3.53) can be written down as

Z= N/DUe*S“”[U], (3.55)

where the integration is over the gauge link variables U subject to periodic
boundary conditions in time direction, U(&,0) = U(&, 3). The action S(®)[U]
is the sum of some lattice version of F),, (x)F,,(x) over all lattice sites. In time
direction the lattice extends over a finite number of lattice sites, N, while in
space direction the number of lattice sites, N, is infinite in the thermodynamic
limit. According to the analogy described above the inverse temperature 1/7T'
is related to the temporal extension of the lattice by 1/T = N.a thereby fixing
the lattice spacing in physical units. Since N, can only take discrete values it
is convenient to hold this relation fixed while varying the gauge coupling 8 and
therefore implicitly the lattice spacing a. In this way we move the lattice system
through the phase transition obtaining finally

1
E = N-a(B.). (3.56)
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and the energy on a 2 x 10° lattice. The highlighted distributions show the
results at the finite volume critical coupling 8.(N; = 2) = 2.3593 obtained by
reweighting results at nearby [-values.
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In order to get a first impression and some feeling about the lattice spacings
we are dealing with let us calculate the temporal scale a in physical units. For
convenience we adopt the value from [41] for the critical temperature, T, ~
276(2)MeV, and take it as a definition for the moment. The resulting quantities
are collected in table 3.1 and based on the results obtained in section 3.5 with
the FP action. The error in the scale comes entirely from the uncertainty in the

N, Be a, [fm]
2 2.361(1) 0.3575(7)
3 2.680(2) 0.2383(6)
4 2.927(4) 0.1787(3)

Table 3.1: Temporal scale of the FP action at the critical couplings of N, = 2,3
and 4.

determination of the critical coupling and thence in the critical temperature.

3.5 Determination of the critical couplings

There are several alternative methods for determining the critical couplings.
They all give the same critical couplings . as the spatial volume is increased
to infinity. At finite volume, however, the deviation of the estimate from j3. at
infinite volume depends on the method applied. One possible method employed
in the early days of finite temperature simulations on the lattice is to measure
the deconfinement fraction [26],

£a(8) = > funl8) ~ . (357)
where foq(3) is the fraction of measurements at a given (-value for which the
phase of the Polyakov loop, 6 = arg(L), lies within the range of £20° around
the Z(3) roots e>™*/3 k = 0,1,2. The critical coupling £, is then defined as
the point where f4(3) takes a given value. Originally [26], the value f; = 1 was
exploited and it was shown that the results are consistent with using f3q instead
of fag. This method provides a definite value of 8. by linearly interpolating from
fa(B)-values bracketing % and also allows reasonable error estimates. Choosing
a different criterion fq(8.) = %, as for example in [38, 41, 42], leads to different
critical coupling values at finite volumes which, in any case, should coincide
in the limit of infinite spatial volume. However, our findings are completely
opposite: we determined the critical values with both the f4(8) = 1 and f4(8) =
% definition on small volumes and performed the finite size scaling. The obtained
infinite volume critical couplings differ from each other significantly. This is
an indication that the finite scaling regime on the small lattices has not been
reached for these quantities. Our observation is in complete agreement with
[42] and relies on the fact that there is no rigorous finite size scaling for 3.
determined from the deconfinement fraction®.

Since we are working on relatively small spatial volumes it is thus certainly
necessary to refer to a definition of the critical coupling which relies on a quantity

6See also the discussion in [37] and [42].
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with definite finite size scaling. Such physically better motivated quantities are
for example response functions like the specific heat or the susceptibility of the
finite temperature system. For instance the susceptibility of the order parameter
in the pure gauge theory, the Polyakov loop susceptibility, is defined as

xe =V ((IL]>) = (IL))*), V =NZ, (3.58)

and is expected to have a rigorous finite size scaling behaviour. In the thermo-
dynamic limit, the susceptibility develops a delta-function singularity at a first
order phase transition. On a finite lattice the singularity is rounded off and the
quantity reaches a peak value, Xlzeak, at 8.(V). In the infinite volume limit,
the singularity emerges from the scaling of the height of the peak and its width
(determining the finite volume shifts 63, in the critical coupling) according to”

1
XNV, 68, ~ v (3.59)

Using this definition, the determination of 3. at finite volumes is plagued by
considerable uncertainties for small volumes due to the broad width of the peak
of xr, as demonstrated in figure 3.4.
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. . . .
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Figure 3.4: Polyakov loop susceptibility at N, = 4 normalized by the volume,
x5/V, as a function of § for various spatial volumes with N, = 8,10,12,14.
The solid curve represent the results of reweighting with the spectral density
method and the dashed lines denote the error bars.

Nevertheless, pronounced peaks are visible for the spatial volumes with
Ny /Ny > 2.5 which we finally considered (see section 3.5.2) in the analysis.
At last, the exact critical coupling has been determined by extensively using
the spectral density reweighting method which enables the calculation of ob-
servables away from the values of # at which the simulations are performed.

"For a second order phase transition one expects X‘zeak ~ V4 and 68, ~ V=1V with
v,v being the conventional critical exponents and d the dimension of the system.
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This method has been first proposed by [43, 44] and was later emphasized by
Ferrenberg and Swendsen [45, 46]. In appendix C we give a detailed description
of the method and illustrate its application by means of simple models like the
Ising model and the g¢-state Potts model in two dimensions.

The strategy as outlined above has already been successfully applied to SU(3)
pure gauge theory [37, 47, 42] as well as full QCD [48].

3.5.1 Simulation details

We performed a large number of simulations on lattices with temporal extension
N, = 2,3 and 4 at three to six different f-values near the estimated critical S..
Various spatial extensions N, /N, = 2.5...5 were exploited with the intention
of examining the finite size scaling of the critical couplings. Configurations were
generated using a Metropolis step followed by an overrelaxation step acting on
SU(2) subgroups.

At each (-value we first let the system run for thermalization. Usually we
spend 500 to 1000 sweeps depending on whether the starting configuration was
randomly generated or a configuration thermalized at a nearby [-value. For
some remarks related to incomplete thermalization we refer to section 3.5.3
about error estimation.

In the equilibrated system we measured the real and imaginary parts of all
Polyakov loop operators averaged over the whole lattice as well as the energy
of the configuration after each sweep. Both the action values and the modu-
lus of the Polyakov loop operator were stored for later use in the reweighting
procedure.

The simulation details and run parameters are collected in tables 3.2,3.3 and
3.4, where we list the lattice size together with the (B-values and the number
of sweeps. The number of sweeps as a measure of the collected statistics is
inadequate for phase transitions (see the discussion in section 3.5.3), because
it is rather biased by the persistence time and the critical slowing down. The
persistence time of one phase is defined as the number of sweeps divided by
the observed number of flip-flops between the two phases [37]. This quantity
is sensitive only for [-values nearest to the critical coupling 5. and has to be
taken with a large grain of salt: for the small volumes which we exploited the
fluctuations within one phase can be as large as the separation between the two
phases, and the transition time from one state to the other is sometimes as large
as the persistence time itself.

In the last two columns we list the estimated persistence time 7, and the
integrated autocorrelation time 7i,¢ of the Polyakov loop operator. Note that the
integrated autocorrelation time grows significantly near the phase transition®
and can therefore serve as a first crude estimate of the critical couplings.

3.5.2 Analysis details

For the determination of the critical couplings in the thermodynamic limit we
resort to a two step procedure. First, we determine the critical coupling with its

81n fact the integrated autocorrelation time is expected to diverge near second order critical
points according to the dynamical scaling law 7t ~ €% where £ is the correlation length and
z is the dynamical critical exponent. At a first order transition the correlation length remains
finite, however, it may appear divergent due to the presence of tunnelings.
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lattice size 15} sweeps Tp Tint
2 x 103 2.3550 30000 260.5
2.3575 30000 4300 283.0

2.3560 30000 4600 280.0

2 x 83 2.3300 14240 29.6
2.3500 10144 93.5

2.3550 5120 127.9

2.3575 12288 1400 202.4

2.3700 10144 114.7

2 x 63 2.3250 8096 35.6
2.3500 14144 650 105.4

2.3600 10000 700 96.8

2.3750 10144 39.2

Table 3.2: Run parameters of the finite temperature simulations at N, = 2.

lattice size 15} sweeps Tp Tint
3 x 123 2.675 25000 114.8
2.680 45000 3200 188.9

2.685 24000 96.3

2.690 20000 53.4

3 x 10° 2.670 18000 67.0
2.680 42000 2300  89.2

2.685 48000 2400 104.4

2.690 27000 85.3

3 x83 2.650 10096 43.1
2.660 10000 48.3

2.670 26000 41.2

2.680 30000 1400 64.3

2.690 19000 53.5

2.710 10000 35.5

Table 3.3: Run parameters of the finite temperature simulations at N, = 3.
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lattice size B sweeps T Tint
4 x 14° 2917 50405 4300 62.8
2.922 51812 4700 67.1

2.930 44607 64.4
4x12°  2.850 15000 19.7
2.890 15000 30.4
2.910 33000 34.9
2.920 33000 3700 66.4
2.930 15000 38.2
4% 10° 2.850 10000 22.4
2.880 16000 37.9
2.800 21124 18.9
2.900 35000 34.2
2.910 35000 2100 36.0
2.920 20000 39.9

Table 3.4: Run parameters of finite temperature simulations at N, = 4.

error on every lattice size by means of locating the peak of the Polyakov loop
susceptibility as described in section 3.5 and in appendix C. In a second step we
extrapolate the critical couplings for each value of N, to infinite volume using
the finite size scaling law for a first order phase transition?,

N,

Be(Nr,Ny) = Be(N-,oc) — h (N_g> 3 , (3.60)

where h is considered to be an universal quantity independent of N, [49]. In
fact, one often assumes the value h > 0.1 determined on small N, lattices also
for the extrapolation at larger N, [47, 41, 49]. In our simulations of the FP
action the universality of the finite size scaling law seems to be applicable to
N, =2 and N, = 4 while the behaviour at N, = 3 is not clear to us.

In figure 3.5 we show the pronounced peaks of the Polyakov loop suscepti-
bility for some of the simulated lattice sizes. The figures from the other vol-
umes look very similar. The solid lines are the interpolation obtained from the
Ferrenberg-Swendsen reweighting and the dashed lines represent the bootstrap
error band estimation. All the interpolations are based on the collective data
of the simulations listed in tables 3.2-3.4 for a given lattice size, although the
runs at [-values far away from the critical coupling do not influence the final
result'®. By virtue of the reweighted curve we determine the critical coupling
as the location of the peak of the Polyakov loop susceptibility. The numerical
results of this analysis are listed in table 3.5, where we display the finite size
critical couplings together with the corresponding infinite volume limit and the
scaling constant h. The finite size scaling behaviour for each N, is shown in
figure 3.6.

9See remarks and discussion in the introduction of section 3.5.

10This is due to the fact that the distribution of configurations at a S-value far away from
the critical coupling has a vanishing overlap with the distribution obtained at the critical
coupling S..
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Figure 3.5: The Polyakov loop susceptibility on lattices of size 4 x 123,3 x
123,3 x 10% and 2 x 10®. The solid curves are the interpolations using the
spectral density method, the dashed lines show the bootstrap error bands. The
interpolations are based on the data of the simulations as displayed in table 3.2,
3.3 and 3.4.

6C(NT :2) /BC(NT :3) /BC(NT :4)

2.3552(24)

2.3585(12)  2.6826(23)

2.3503(7)  2.6816(12) 2.9119
2.6803(10)  2.9173

2.3606(13) 2.6796(18) 2.9273
0.14(9) -0.05(7) 0.25(9)

=B|E % 3w o

Table 3.5: Results of the critical couplings (. from the peak location of the
Polyakov loop susceptibility and the corresponding infinite volume limit ob-
tained according to relation (3.60). The finite size scaling constant h is also
given.
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It is also interesting to check the finite size scaling behaviour of the Polyakov
loop susceptibility peak, )(Eeak, as a function of the volume according to (3.59).
These results are shown in figure 3.7, where we compare the ratio x2**/V with
the value expected from the discontinuity of the Polyakov loop expectation

value,
peak 2
Xp  _ EAL 1
L= < 5 . (3.61)

For N, = 2 and 4 the observed scaling looks convincing while it is not at all
conclusive for N; = 3. However, we have to admit that the volumes which we
could exploit are too small to make any rigorous statements. Nevertheless, in all
three cases we observe good agreement with the value from formula (3.61). As is
evident from figure 3.7 and eq. (3.61), the expectation value of the Polyakov loop
order parameter L gets smaller for larger values of N,. Indeed, it is expected
to vanish exponentially in NV,.

One last remark concerns the double peak structure in the distribution of
observables expected at a first order phase transition. The gap between the
peaks in the corresponding histograms experiences large volume dependence
and is smeared out for small volumes. This effect is even more pronounced for
the energy distribution and we could observe the double peak structure only
at N, = 2 where a volume ratio as large as N,/N, = 5 could be reached.
The corresponding energy histogram is shown in figure 3.3. The fact that this
feature of the phase transition needs large spatial volumes, i.e. N,/N, > 5, is
in compliance with the observation made in simulations of the Wilson action
on large volumes [37] where the double peak structure emerged clearly only on
lattices as large as 4 x 243,
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3.5.3 Error estimation

In this section we will discuss how we determine the errors on the measured
quantities like the Polyakov loop susceptibility yr and the critical coupling
Be. We will first dwell on the different methods employed, discussing some of
the properties like stability and reliability in general, and the application to
the critical coupling in particular. At the end we discuss possible sources of
systematic errors.

General considerations

There are many methods in business for estimating the standard error of a
measurement. Widely used are the jackknife and bootstrap estimate of error.
For an introduction see [50, 51].

The non-parametric bootstrap is conceptually the simplest of all techniques
and reveals the basic idea of resampling most clearly. It extends the naive
estimate of standard deviation of a measured quantity in an obvious way, so
that it can be used to estimate the error on any arbitrary secondary quantity,
no matter how complicated it may be.

The bootstrap can be cast into the following formal algorithm. Suppose a
data set consisting of an independent and identically distributed (iid) sample of
size N from an unknown probability distribution F,

T, Ty TN SR (3.62)
Let F' be the empirical probability distribution of the observed MC data X; =
x1,X2 = a,...,Xp = Ty, giving probability mass 1/n on each X,

X1, Xo, ..., X, M B, (3.63)

and § = é(Xl ,Xo,...,X,) the estimator of an arbitrarily complicated secondary
quantity.

1. Draw a random sample X} with replacement from F and calculate any
secondary quantity 6* = 6(X5, XJ,..., X}).

n

2. Independently repeat step 1 a large number B of times to obtain bootstrap
replications 6*',6*2, ..., 6*B.

3. Estimate the error 66 on the estimator 6 by calculating the bootstrap error
60B00t:

) B 1/2
5éB00t = (m Z(é*b - é*.)2> ) (364)
b=1

where 6* = Y7, §*/B.

Formally, 6050 is really defined as the limit of (3.64) as B — oo, however, in
practice one is limited to some finite value of B.

For the reweighted Polyakov loop susceptibility we always used B = 50 and we
checked in some cases that increasing this number did not have any significant
effect on the error estimation.
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The above algorithm applies to independent measurements only. Since we
measure the Polyakov loop after every sweep, this premise is clearly violated.
To circumvent this drawback one considers blocks of data and treats them as
independent. The resampling is then done by choosing randomly the blocks
and calculating the secondary quantity on the union of the chosen blocks. As
a consequence of this procedure the error strongly depends on the size of the
block. To avoid severe under- or overestimation of the error we calculated the
bootstrap error as a function of the block size for each run at a given f-value.
We observed that the bootstrap error always reached a stable plateau for block
sizes around 500 to 1000 sweeps.

As a check for the reliability of the bootstrap we treated every sweep as
independent and corrected for the residual autocorrelation by multiplying the
error estimate by the factor v/27,, where 7y is the integrated autocorrelation
time. The error estimates obtained in this way yielded values comparable to the
bootstrap estimates, while showing weak instability with regard to S-runs having
similar statistics. Nevertheless it supported our confidence in the bootstrap
procedure of estimating the error.

Error estimate for j.

The bootstrap error estimation described above extends to the multi-histogram
reweighting technique in a straightforward manner. In sampling theory it is
natural to consider stratified situations where the sample space H is a union of
disjoint strata Hj,

K
H=J M. (3.65)
k=1

In the case of the deconfinement transition the Hj’s denote the sample spaces
of the k simulated -values ;. The data consist of separate iid samples of size
N, from each stratum,

Tkl Tho, - TkN, X F k=1,... K, (3.66)
where Fj, is an unknown probability distribution on Hj. Observing X;; =
Tri,t=1,...,np,k=1,..., K in a MC simulation, define

Xit, Xuz, ooy Xk LBy k=1,...,K, (3.67)

as the empirical probability distribution for each stratum giving probability
mass 1/ny on the Xi;’s and yielding an arbitrary functional statistic

0=0(F,F,... Fx) (3.68)
of an arbitrary secondary quantity. The bootstrap estimate of standard devia-
tion is now obtained by the following algorithm:

1. Construct the ﬁ‘k’s.

2. Draw independent bootstrap samples X;;,i = 1,...,n; from Fk,k =
1,..., K and calculate any secondary quantity 6* = §(Fy, Fy5, ..., Fj).

3. Independently repeat step 2, B times, obtaining bootstrap replications
é*l é*2 é*B
0% .
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4. Estimate the error 6 on the estimator 0 by calculating the bootstrap error
50B00t:

. B 1/2
000t = (m > 6" —é*'>2> , (3.69)

b=1
where §* = ZbB:1 6+ /B.

As before, 50Boot is formally defined as the limit of (3.69) as B — oc. Again,
the algorithm applies to independent measurements only, thence we resample
blocks of definite block size determined as mentioned above.

In the case of multi-histogram reweighting we can determine error estimates
for any quantity involved like the spectral density function W (S) as well as the
Polyakov loop susceptibilities reweighted at some given S-value. This is how
we determined the error bands in the figures showing the Polyakov loop suscep-
tibility peaks. We go even a step further and determine the critical coupling
B¢ by locating the peak of the Polyakov loop susceptibility for every bootstrap
sample, *b = Bé’ and estimate the error on §. from (3.69). Since the calcula-
tion of the Bg’s involves many non-trivial steps, the estimated error has to be
taken with caution. However, we checked for the stability and reliability of the
estimate by employing several tests. For example we estimated the error on f,
using a block size of one measurement only and correcting with the usual factor
/2788 where & = max(r¥,k = 1,..., K). This procedure usually yielded
a slightly larger error estimate than with the standard bootstrap method.

As another more serious check we discarded one or several runs at given
(B-values in order to check for the stability of the peak location and to test
consistency among different S-runs. In almost all cases the critical coupling
B. varied only within the usual 90% confidence interval (~ +1.63.), again
supporting our reliance on the error estimation procedure employed.

Possible sources of systematic errors

While the previous sections deal with the error of statistical kind only, we are
also facing the problem of undetected systematic errors. There are two possible
main sources of systematic errors involved, firstly, incomplete thermalization,
and secondly, elusive and thus insufficient statistics as explained below. While
the first source is rather easy to detect and straightforward to circumvent, we
do not know any cheap remedy for the cure of the latter except increasing the
statistics so as to obtain enough phase flips.

As we already mentioned in section 3.5.1 we discarded a number of sweeps at

the beginning of each run to eliminate effects due to incomplete thermalization.
Usually leaving out the first 500 to 1000 sweeps were enough, depending on if
one starts from a random configuration or from a configuration thermalized at
a nearby (-value. In each case we checked that an increase in the number of
discarded sweeps had no systematic effect on the mean value or the fluctuations
of the quantity under consideration. In this way one can also rule out possible
effects from hysteresis.
In one case (N; = 4, Ny = 14,8 = 2.930) we could observe such a systematic
shift of the Polyakov loop susceptibility. Presumably this is a hint at having
insufficient statistics at this S-value, however, it had no effect on the critical
[-value obtained by reweighting.
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As for the second source, the situation is more problematic. Near the phase
transition the number of flips between one and the other phase is the crucial
quantity as a measure of the quality of the collected data, rather than the num-
ber of sweeps. However, for larger lattices the system remains in one of the
phases for longer periods of MC time, making it hard to decide if one is near
the phase transition. For the largest lattice considered (N; = 4, Ny = 14) we
observed periods as large as 5000 sweeps in between the phase changes, thus
yielding in this ’worst’ case only of order 10 flips despite the large number
of sweeps. Sometimes we observed that increasing the statistics only slightly
yielded values for the susceptibility leaving the 95% confidence interval unex-
pectedly often, while not improving on the statistical error. This may be an
indication that the statistical error runs into the trouble of easily underesti-
mating the effective error near the phase transition, even when calculated with
elaborated methods like the bootstrap. Thence having of order 10 to 20 flips
near the phase transition is the lowest possible edge of statistics to have. How-
ever, the reweighting technique again seems to smooth over this fact in the
manner that it combines the data from different S-values and thus enlarging
the accessible information on the system by a considerable amount. In most
cases the reweighting technique yielded a stable §.-value already when consid-
ering only half of the statistics, and the increased statistics was effectively used
only for consolidating and stabilizing this value.

Nevertheless, the danger of having elusive data can not be ruled out and only
collecting larger statistics will turn this source of systematic error negligible.

3.6 Conclusions and outlook

In this chapter we have discussed in some detail the finite temperature de-
confining phase transition in pure gauge theory and the determination of the
corresponding critical couplings of the parametrized FP action at N, = 2,3 and
4. The small statistics and small lattice sizes accessible to us due to the com-
putational overhead of the parametrized FP action present the main obstacles
in our calculations. As is pointed out in the last section it would be desirable
to have at least of the order of 20 flips or more between the two phases so as to
exclude possible systematic effects. In addition, it would be useful to simulate
on larger lattices like 4 x 162 and 3 x 14% in order to check if the finite size scal-
ing region is really reached. Such studies on larger lattices are surely needed to
clarify the situation at N, = 3, where the strange finite size scaling behaviour is
not yet understood. In this sense, the quoted errors are to be taken with great
care, as discussed in section 3.5.3.

Another possible direction of future work is the determination of the crit-
ical couplings at N, = 5 or 6 in order to check the scaling behaviour of the
parametrized FP action at lattice spacings smaller than a ~ 0.15.

It is clear that such projects are very demanding with respect to computer
resources, however, there is no fundamental problem to it. Due to the sophis-
ticated analysis methods which we have developed and which allow one to dig
out the needed physical information on the system, it is enough to perform
long enough simulations near a phase transition at three or four coupling values
only. This, of course, simplifies enormously the task of determining the phase
transitions.



Chapter 4

Scaling properties of the FP
action

4.1 Introduction

In this chapter we aim at a systematic quantization of the improvements achieved
with the present parametrization of the FP action. It is of crucial importance
for any improvement procedure to size the remaining lattice artifacts and to
check the extent to which lattice artifacts are removed at the physically inter-
esting lattice spacings. Another issue is to define the range of validity of the FP
program, i.e. to check for a possible breakdown of the approach, if present, at
very coarse lattice spacings.

Both these matters can be tackled by investigating the scaling behaviour
of renormalization group (RG) invariant quantities on a large range of (coarse)
lattice spacings. Any physical quantity measured on the lattice is renormalized
by appropriately tuning the lattice spacing when the continuum limit 8 — oo
is taken and thence any given quantity measured in units of the lattice spacing
scales according to its dimension. Scaling can best be seen in dimensionless ra-
tios or products of physical quantities which are RG invariant and thus should
be constant for all values of the gauge coupling and, correspondingly, for all lat-
tice spacings. Any deviation from this scaling behaviour is due to the presence
of lattice artifacts.

There is an infinitely large set of quantities on which the scaling behaviour
of different actions, and in particular the FP action, can be tested. Among
them are the static quark-antiquark potential and quantities derived from it
like the string tension ¢ or the hadronic scale rq, the charmonium, the torelon
and the glueball spectrum, the deconfining phase transition temperature as well
as other thermodynamic quantities like the free energy, the latent heat and the
surface tension in finite temperature lattice gauge theory and the topological
susceptibility to mention only a few. Some of these quantities have already been
investigated in the context of FP actions. For example in [6, 12] the scaling of
the torelon mass and the related string tension has been exploited as well as the
static potential at finite temperature. Scaling of the topological susceptibility

41



42 Chapter 4. Scaling properties of the FP action

has been successfully tested in [12] and excellent scaling of the free energy den-
sity has been observed in [52, 53].

The quantities which we have chosen in this work in order to test the scaling
behaviour of the FP action are the deconfining phase transition temperature 7.,
the static quark-antiquark potential at zero temperature, the hadronic scale rg
and the effective string tension o.

Another tempting and physically very interesting possibility to size lattice
artifacts and to compare scaling of different actions is provided by the glueball
spectrum. However, this is a heavyset field and therefore deserves a chapter by
its own, cf. chapter 5.

The scaling checks will be pushed to the extreme by exploring the behaviour
of the FP action on coarse configurations with very large fluctuations corre-
sponding to N, = 2. This situation is presumably not relevant for practical
applications, and indeed, it becomes more and more difficult to measure physi-
cal quantities due to the very small correlation length and the rapidly vanishing
signals. Nevertheless, it is still interesting to investigate this situation in order
to check the region in which the classical approximation to the renormalization
group trajectory is still valid and, in addition, it might give the possibility of
connecting to strong coupling expansions of the gauge theory [54].

Another matter concerns asymptotic scaling. As opposed to scaling, asymp-
totic scaling tests the behaviour of dimensionful quantities near the continuum
limit. In particular, it predicts the dependence of a given quantity on the bare
coupling g. How far a specific lattice gauge action deviates from asymptotic
scaling is a legitimate and important question. However, it is addressed here
only at the very edge for the case of 7.

The chapter is organized as follows. In the first section we will investigate
the scaling behaviour of the heavy quark-antiquark potential, thereby describing
procedures and techniques for measuring the potential on the lattice. The second
section deals with the scaling of the critical temperature of the deconfining
temperature, T,., and quantities related to the static potential like g and o,
and reports on the details of the extraction of these quantities. Finally, in the
last section we summarize the results and give a first, preliminary conclusion on
the scaling behaviour of the FP action.

4.2 Scaling of the static quark-antiquark poten-
tial

One of the rather easily accessible quantities mentioned in the introduction is
the static quark-antiquark potential. It provides an immediate and effective test
of scaling: the combinations r/ry and roV(r) are dimensionless and thus RG
invariant. The potential data measured at different values of the gauge coupling
B should overlap with each other when the scaling region of this observable is
reached. In addition, one can calculate the quantities 7o and o from the potential
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as explained below and they can be used in turn for testing the scaling of the
dimensionless combinations 79T,, T./+/c and 79+/c.

Violations of rotational invariance have been found to be strong for the
standard plaquette gauge action at coarse lattice spacings [55, 56, 6] and there-
fore it is desirable to improve the gauge action also on large fluctuations. In
[8] it was pointed out that for an appropriately chosen renormalization group
transformation one finds a FP action with short interaction range and small
violations of rotational symmetry in the static quark-antiquark potential even
at shortest distances. This was shown by means of the static potential at finite
temperature using FP Polyakov loops in the linear approximation. The remain-
ing rotational symmetry violations in the potential were suspected to originate
from the missing direct interaction between diagonally separated links in that
former parametrization of the FP action given in [8]. The new parametriza-
tion presented in this work includes such interaction terms, which are certainly
present in the true FP action, and thus is expected to show even less viola-
tions of rotational invariance in the potential as observed before. Our intention
for measuring the static quark-antiquark potential is however not to test the
rotational invariance, but rather aims at the determination of rq and o.

4.2.1 The static potential

It is well known that the static quark-antiquark potential in lattice gauge theory
is related to the expectation value of the rectangular Wilson loop W(R, T) via

(W(R,T)) ~ e VAT (4.1)

for large T. Here, R and T denotes the spatial and temporal extent of the
Wilson loop, respectively. One can interpret the expectation value of a Wilson
loop pictorially as the creation of a quark-antiquark pair at time ¢ = 0 at point
x = R/2, separating instantaneously to x = R and 2 = 0 and then evolving for
time T until it annihilates. Thus the potential can be determined in principle
by calculating the limit

1

V(R) = lim —=In(W(R,T)). (4.2)
T—oo T

In (pure) lattice gauge theory the potential is expected to confine quarks and,

more precisely, to grow linearly for large separations,

lim V(R) ~ oR, (4.3)
R—o0

where o is the so called string tension. This area law behaviour of the Wilson
loop is confirmed in every order of a systematic strong coupling expansion for
o [57, 58]. Per contra, from asymptotic freedom one expects a Coulomb-like
interaction V(R) ~ a/R of the quark-antiquark pair at short distances. There-
fore, a simple ansatz describing (phenomenologically) a static quark-antiquark
potential, simultaneously exhibiting confinement and asymptotic freedom is the
Cornell potential [59],

V(R) = Vo + % +oR. (4.4)

For the understanding of confinement the ability to calculate the potential
non-perturbatively is crucial. At present the only non-perturbative calculation
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of the quark-antiquark potential is by determining the expectation value of the
Wilson loop numerically in Monte Carlo simulations. For all practical purposes,
one is restricted to finite R and T and the relative errors of the Wilson loop
expectation values increase exponentially with temporal extension 7'. To reduce
these statistical fluctuations one can use thermally averaged temporal links [60],
but it is even more vital to enhance the overlap with the physical ground state
of the system. This can be achieved by invoking for instance iterative spatial
smearing techniques (see e.g. [61]). The techniques which we use are described
in detail in section 4.2.3.

4.2.2 Determination of the spatial scale

An important part of any lattice simulation is the determination of a physical
scale in order to convert quantities measured on the lattice into physical units.
This can be accomplished by choosing one physical quantity as a reference scale.
Any quantity which can be easily and accurately determined numerically on
the lattice as well as experimentally will do. A typical reference quantity in
lattice gauge theories is the mass of a low-lying hadron, however, in pure gluon-
dynamics we have to resort to a purely gluonic quantity (which, nevertheless,
should be defined in full QCD as well). As outlined in section 3.4 the critical
temperature T, of the deconfinement phase transition is such a reference scale.
More easily accessible is the determination of the scale through the static quark-
antiquark potential, where one refers to the string tension o to set the scale.
Nevertheless, this method is plagued by two major difficulties: firstly and most
importantly, the noise/signal ratio becomes large in the region where one needs
an accurate determination of the potential, cf. eq. (4.1) and (4.3). In addition,
due to the fact that the excited string has a small energy gap at large distances R,
the ground state becomes difficult to resolve with standard methods. Secondly,
and less importantly, the string tension is not well defined in full QCD due to
string breaking.

To circumvent these problems a hadronic scale r. was introduced [62] through
the force F(r) between static quarks in the fundamental representation at inter-
mediate distances 0.2fm < r < 1.0fm, where we have best information available
from phenomenological potential models [59, 63]. The advantages of this choice
are manifold: the scale is defined precisely both in pure gauge theory and in full
QCD and it can be determined well numerically with good statistical precision.
This quantity is therefore regarded to be technically more appropriate than the
string tension to fix the scale. We have

2V'(re) = r2F(r.) = c, (4.5)

where originally [62] ¢ = 1.65 was chosen yielding a value r. = rg ~ 0.49fm =
(395 MeV)~! from the potential models.

However, also this alternative way of setting the scale is hampered by some
drawbacks as will be pointed out in section 4.3.2. Firstly, there is no 'unique’
method for calculating the derivative in eq. (4.5). For example, one can use the
ansatz in eq. (4.4) for interpolating the potential either locally around r. only,
or globally by including as many potential values as possible. In addition, the
possibility of choosing different points r. for determining the force in (4.5) in-
troduces ambiguities which are beyond the statistical uncertainties, particularly
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on coarse lattices, and indeed, measurements of ry from several groups differ
significantly from each other!. It is therefore fair to say, that, since the ambigu-
ities become negligible on fine lattices, ro is an appropriate scale for performing
continuum limit extrapolations from fine lattices, however, its use on coarse lat-
tices with a > 0.1 fm is questionable, especially when an accuracy level of less
than 2% is required.

In order to estimate the systematic ambiguities we have determined ry from
global fits to the potential as well as from local fits using different values of r,
and c¢. Referring to precision measurements of the low-energy reference scale
in quenched lattice QCD with the Wilson action [64, 65, 66] we have collected
values for ¢ and r. in table 4.1. These are the values which we use for the

re/To c
0.662(1) 0.89

1.00 1.65
1.65(1)  4.00
2.04(2) 6.00

Table 4.1: Parameter values for the determination of the hadronic scale through
eq. (4.5). The numbers in the first line and in the two last lines are from
high-statistics measurements of the static gg-potential using the Wilson action
[66, 65].

determination of the spatial scale, but unfortunately they already incorporate
some of the systematic ambiguities discussed above.

4.2.3 Simulation details

We performed simulations with the FP action at six different §-values, of which
three correspond to the critical couplings determined in chapter 3. Configu-
rations were updated by combining a Metropolis sweep with an overrelaxation
sweep acting on SU(2) subgroups. The spatial extent of the lattices were chosen
to be at least ~ 1.5 fm, based on observations in [66, 67]>. We measured the
correlation matrix of Wilson loops after every second or fifth updating sweep,
cf. the run parameters in table 4.2 where we list the values of the couplings,
the lattice volumes and sizes together with numbers relevant for the obtained
statistics.

In order to enhance the overlap with the physical ground state of the po-
tential we exploited smearing techniques. The operators which we measured
in the simulations are constructed using the spatial smearing of [61]. The
smoothing of the spatial links has the effect of reducing excited-state contam-
inations in the correlation functions of the Wilson loops in the potential mea-
surements. The smoothing procedure we use consists of replacing every spatial

1See for example the collection of data from measurements with the Wilson action in [64].

2Within their statistical errors (~ 1%) the authors of [66, 67] do not observe any finite
size effects affecting the potential values on varying the spatial lattice extent between L = 0.9
fm and L = 3.3 fm. On the other hand, the authors of [65] observe significant finite volume
effects on the 1 - 1.5 % level for the string tension o on lattices as large as L = 1.7 fm, while
ro is much less affected.
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Jé) lattice volume lattice size [fm] # bins bin size # meas./bin
3.400 14* 1.45 43 180 90
3.150 12¢ 1.61 42 500 a0
2.927 144 2.39 40 200 40
2.860 104 1.84 43 180 90
2.680 124 2.72 ol 200 40
2.361 124 4.02 57 200 40

Table 4.2: Run parameters for the simulations of the static quark-antiquark po-
tential. Values for the coupling, the lattice volumes and sizes are listed together
with characteristic numbers for the obtained statistics.

link U;(n),j = 1,2,3 by itself plus a sum of its neighboring spatial staples and
then projecting back to the nearest element in the SU(3) group®:

SiUi@) = Psuw{Ui@) + A Y (Uk@)Uj(a + DUf @ +))  (4.6)
k#j

+Ul (@ — W)U;(z — B)U(z — +5))}.

Here, Psy(s)@ denotes the unique projection onto the SU(3) group element
W, which maximizes ReTr(W Q') for any 3 x 3 matrix Q. The smeared and
SU(3) projected link S;Uj(z) retains all the symmetry properties of the origi-
nal link U;(z) under gauge transformations, charge conjugation, reflections and
permutations of the coordinate axes. The whole set of spatially smeared links,
{81U;(z), zeL*}, forms the spatially smeared gauge field configuration. An op-
erator O which is measured on a n-times iteratively smeared gauge field config-
uration is called an operator on smearing level S, or simply S,,O. In the simu-
lation of the static gg-potential we used smearing levels S,, with n =0,1,2,3,4.
The smearing parameter was chosen to be A; = 0.2 in all cases.

The correlation matrix of spatially smeared Wilson loops are constructed in
the following way?. At fixed ¢ we first form smeared string operators along the
three spatial axes, connecting # with # + Ri,

S, Vi(#, &+ Ri;t) =

SpUi (2, 6)Sa U@ +14,t) ... SpUs(Z+ (R —1)i,t), i=1,2,3, (4.7)

and unsmeared temporal links at fixed #, connecting ¢ with ¢t + T,

Vilt,t+ T; @) = Uy (7, )Us(Z,t +1).. . Us(Z,t + (T — 1)). (4.8)

3The SU(3) projection is done by applying SU(2) subgroup projections.
4Note that we are concerned with a 5 X 5 correlation matrix in the case where we use
smearing levels S, with n =0,1,2,3,4.
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The smeared Wilson loop® is then obtained by calculating

3
Wim(R,T) => > Te §V;(Z, & + Ri;t)Vi(t,t + T; 7 + Ri)

#t i=1

SnVi(#,Z+ Rist + T)V] (t,t + T; &), (4.9)
and finally we define the correlation matrix according to
Cim (R, T) = Wi (R, T)) = Coui(R, T), (4.10)

where the average is estimated by means of the Monte Carlo simulation. In the
following the correlation matrices are analyzed using variational techniques as
described in the subsequent section.

4.2.4 Analysis details and results

In order to extract the physical scale through equation (4.5) we need an inter-
polation of the potential and correspondingly the force between the quarks for
arbitrary distances r not restricted to integers corresponding to the lattice sites.
This interpolation of V' (r) is achieved by fitting a potential of the form (4.4) to
the measured potential values. We use this simple ansatz in order to calculate
the force (derivative of V') in eq. (4.5). The potential can be very well described
with this ansatz, but of course we do not claim that it has exactly this form.

We employ a two step procedure for the fitting: First we extract the poten-
tial values V(r) for each r separately using the variational techniques described
in section D.1. This method also gives a linear combination of the string op-
erators S, V,n = 0,...,4, which projects sufficiently well to the ground state
of the string, i.e. eliminates the closest excited string states. Based on effec-
tive masses and on a x2-test taking all temporal correlations into account as
described in section D.2 we choose a plateau region from tnin t0 tmax Where
we fit the exponential form Z(r)exp(—tV (r)) to the ground state correlator,
carefully checking the stability of the fit under variation of the fit parameters.
The results of these fits are collected in table F.2 in appendix F, where we list
the plateau regions (fit range), the extracted potential values V (r) and the x?
per degree of freedom, XQ/NDF. The uncertainties in the extracted values for
V(r) are calculated using a non-parametric bootstrap method.

Once we have determined a suitable plateau region for each r we perform
the second step by fitting the expression Z(r)exp(—t(Vo + a/r + or)) directly
to the correlation matrices Wi, (1, t) projected to the ground state of the string,
simultaneously for all » and the previously chosen t-values. This step allows
to take into account all correlations among the correlation matrix elements for
both different r and ¢ by using a y2-function with the corresponding covariance
matrix. The fit range in r is chosen by carefully examining the x2-function
and the stability of the fitted parameters aVj, a and oa?, while keeping the fit
ranges in the ¢-values fixed for each r separately. Again, the quoted errors are
estimated through the fluctuations of the fit parameters and all other indirectly
calculated quantities like rg/a determined from the c-values in table 4.1, on

5Let us remark that we measure the on-axis potential only, i.e. Wilson loops having spatial
extent in the direction of the lattice axes z,4 = 1,2, 3 only.
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500 bootstrap samples. The results of the global fits are tabulated in table 4.3,
where we quote the fit range in r, the parameters aVy, o, 0a® together with their
errors for all f-values. The non-monotonic variation of @ = a(f) shows clearly,
that o and oa? are effective fit parameters. The last column quotes the x2 per
degree of freedom, x2/Npr.

B fit range aVy a oa’ x2/Npr
3400  2-6  0.7805(7)  -0.251(9) 0.0620(13)  1.02
3150  2-5  0.820(15) -0.285(20) 0.0992(27)  0.75
2027 2-6  0812(16) -0.272(20) 0.1606(33)  1.35
2860 1-4  0.8007(48) -0.2623(33) 0.1885(17)  1.17
2680 1-4  0.7766(52) -0.2547(37) 0.2871(15)  0.43
2361  1-4  0.615(11) -0.1791(78) 0.6286(37)  0.99

Table 4.3: Results from global correlated fits of the form (4.4) to the static
quark potentials. The second column indicates the fit range in r and the last
column x? per degree of freedom, x?/Npg.

Having at hand an interpolation of the static potential for each [-value,
we are able to determine the hadronic scale r¢ in units of the lattice spacing
through eq. (4.5). The value of ¢ is chosen appropriate to the coarseness of the
lattice and the fit range in r. In table 4.4 we list the final results and the errors
together with the value of ¢ from which rg/a is calculated.

B N, ro/a ¢

3.400 181(3) 0.89
3.150 3.71(3) 1.65
2927 4 293(1) 165

2.860 2.713(9) 1.65
2.680 3 2205(3) 1.65
2.361 2 1.494(3) 4.00

Table 4.4: Results for the hadronic scale ro/a from correlated fits of the form
(4.4) to the static quark-antiquark potentials. The last column indicates the
value of ¢ (cf. table 4.1) from which r¢/a is determined through eq. (4.5).

As mentioned in the introduction to this section, the static gg-potential is an
immediate, non-trivial and effective test of scaling. Since both the ratios r/rg
and oV are RG invariant, one expects the potentials expressed in terms of the
hadronic scale as a function of r/rq to lie on top of each other after subtracting
an unphysical constant. This constant in the potential is fixed through the
convention that V (rg) = 0 for each potential. The resulting potential values are
displayed in figure 4.1. If we also plot the fits to the potential values we observe
that the curves can scarcely be distinguished from each other. Therefore we only
draw one single curve (dashed line) obtained by a simultaneous fit to all the data
respecting the previously chosen fit ranges in r. The curve serves to guide the
eye and shows the function (4.4) appropriately rescaled and normalized.

It is also useful to know how 7¢/a scales with 3. Thence we parametrize the
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Figure 4.1: Scaling of the static gg-potential V(r) expressed in terms of the
hadronic scale rq. The unphysical constant roV (ro) has been subtracted for
each lattice spacing so that the curves all have the same value at r/ro = 1. The
dashed line is drawn to guide the eye and shows a fit of the data to the function
(4.4) appropriately rescaled and normalized.
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results in terms of a smooth function of 5 in order to provide an interpolating
formula for g /a at arbitrary values of § in the interval 2.361 < § < 3.4, thereby
checking for the onset of asymptotic scaling. The leading universal behaviour of
the solution of the renormalization group equation for the bare coupling yields

afro = Ae™ /%090 (b g2) =1/ ¥ (1 4 O(g2)), (4.11)

where by = 11/(47)? and by = 102/(47)* are the universal one- and two-loop
coefficients in the perturbation expansion of the S-function and A is related
to the A-parameter. O(g3) indicates non-universal contributions from higher
order terms. Therefore, from the leading behaviour (a/rq) ~ exp(—35/(12bg))
with 3 = 6/g3, we infer a phenomenological description of In(a/rp) in terms of
a polynomial,

In(a/re) = > ar(B - 3)~. (4.12)
k=0

We obtain a good description of the data already with p = 2 for which we plot
the resulting curve together with the data points in figure 4.2. The deviations
of the curve from the data is at least one order of magnitude smaller than the
statistical error. The parameters of the p = 2 and p = 3 polynomial are given
in table 4.5 and can directly be compared to analogous formulas for the Wilson
action [65, 64]. Note the smallness of the higher order coefficients in our fits.

p=2 p=3

aop -1.1539(18) -1.1536(31)

ay -1.0932(68) -1.0925(97)
as 0.132(11) 0.129(29)
as -0.005(51)
X2/NDF 0.20 0.29

Table 4.5: Parameters of the phenomenological description of In(a/rg) in terms
of a polynomial of order p = 2 and p = 3, 79/a from table 4.4 as determined
from global fits.

p=2 p=3

ag -1.1622(24) -1.1615(34)

ay -1.0848(95)  -1.082(13)
aso 0.156(17) 0.146(39)
as 0.020(70)
x2/Npr 1.31 1.92

Table 4.6: Parameters of the phenomenological description of In(a/rg) in terms
of a polynomial of order p = 2 and p = 3 for the values of ry/a obtained from
local fits, table 4.9.

When using the interpolating formula one should include a relative uncer-
tainty of 0.2% at 8 = 2.361 growing linearly to 0.6% at 8 = 3.40 and corre-
sponding roughly to the statistical accuracy of the data®.

6Note, that we did not take into account the uncertainty in the determinations of ro/a
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Figure 4.2: The measured data points of In(a/rg) (circles) and their phenomeno-
logical description in terms of a polynomial quadratic in 8 (solid line). The
plotted points are the values of rg/a from the local fits.
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Let us finally draw the conclusion that the potential data measured with the
FP action shows excellent scaling behaviour over the whole region of r/rg and
for all values of 3 investigated. We also observe a smooth and nearly exponential
change of the hadronic scale under variation of the gauge coupling. Of course,
these statements are moderated by the fact that the potential itself does not
possess a lot of structure and, indeed, a nice scaling of the potential is also
observed for the Wilson gauge action, at least above Sy ~ 6.0. Already a crude
and non-elaborated determination of ro/a is enough to observe nice scaling
behaviour. Although the scaling of the potential provides a first non-trivial test
and a consistency check for the FP action, further tests are necessary.

4.3 Scaling of the critical temperature and ry/c

To further study the scaling properties of the FP action we examine renormal-
ization group invariant combinations of physical quantities like roTe., T./+/c
and rgy/o. The first two are combinations of two completely independently
determined quantities and therefore provide a highly non-trivial scaling test of
the FP action and allow in principle to quantify lattice artifacts. In particu-
lar 9T, provides a high precision scaling test where the Wilson action shows
scaling violations of the order of 4% at N, = 4, but already less than 1.5% at
N, = 6. Therefore it requires a very precise determination of the reference scale
rp. The third combination, rq+/o, is made of two quantities which are both cal-
culated from the static quark-antiquark potential and therefore are expected to
be strongly correlated. Nevertheless, since the quantities are determined rather
independently as we will see below, it still provides a non-trivial scaling test.

In this section we present and discuss the results for the FP action and
compare them to results obtained from the Wilson action and different improved
actions whenever it is possible. A complete and detailed collection of the data
obtained with the FP action is given in appendix F.

4.3.1 T./\Jo

Let us first look at the ratio T./+/o, the deconfining temperature in terms of
the string tension?. In figure 4.3 we compare the results from the FP action
with data obtained from simulations with different other actions.

The range of N,-values for the calculations with the standard plaquette ac-
tion and the accuracy, with which the string tension is determined, is impressive
and gives clear evidence for the continuum value of the deconfining temperature
in units of the string tension. In table 4.7 we collect all available continuum ex-
trapolations together with the results for the FP action. The data obtained with
the Wilson action is taken from [49] where they use the T, values at N, = 4
and 6 from [47] and extrapolate finite volume data for T, at N, = 8 and 12
from [47] to infinite volume. For the value of /o they use the string tension
parametrization given in [65]. The data for the 1 x 2 tree level improved action

stemming from different values of ¢ in formula (4.5). This will be discussed in detail in section
4.3.2.

"We do not claim that the quantity o is the string tension, but rather follow the atti-
tude commonly adopted in the literature which denotes the quantity o obtained from 3 or 4
parameter fits to the static potential as the string tension.
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action [E] T./\/o
FP action  2.927 0.624(7)
2.680 0.622(8)
2.361 0.628(11)
Wilson [49] o0 0.630(5)
1 x 2 [49] 0 0.634(8)
DBW2 [68] oo 0.627(12)
Iwasaki [42] oo 0.651(12)
Bliss [69] x  0.659(8)

Table 4.7: Results of the deconfining temperature in units of the string ten-
sion obtained with the FP action and continuum values from different other
actions. For completeness we also include the value by Bliss et al. [69] from a
tree level and tadpole improved action. All continuum extrapolations are from
a reanalysis by Teper [70].

is again taken from [49]. The data denoted by RG improved action is obtained
with the Iwasaki action [71] and is taken from [42]. Finally we also quote the
results from the QCD-TARO collaboration [68] obtained with the DBW2 ac-
tion®. The extrapolation of the Wilson, the DBW2 and the Iwasaki data to the
continuum is from [70] where a careful reanalysis is done.

Let us make the following remarks in order to judge the results. Since for
the determination of the string tension one is interested in the long distance
behaviour of the potential one usually follows the strategy to fix the Coulomb-
like term in the fit-ansatz?, i.e. to perform two-parameter fits in aVy and oa®
only. In addition one includes the off-axis potential values and corrects for
distortion effects at short distances due to missing rotational invariance either
by including the effects of the tree level one-gluon exchange in the force when
working with the Wilson action [62, 64] and by systematically increasing the
lower bound of the fitting range.

In contrast to this elaborated procedure we followed a much simpler ap-
proach. As described above we simply perform fits to the on-axis potential
values only and therefore we are limited to small variations of the fitting range.
Nevertheless, the values of o obtained in this way and quoted in table 4.3 are
stable and vary only within their statistical errors over the whole set of sensibly
considered fit ranges. However, the error on o changes considerably, i.e. up to
a factor of 5, depending on whether distance r = 1 is taken into account or not.
Just to play safe we neglect distance 7 = 1 in the fits, even if the x> would allow
it, to obtain the following conservative values!®:

These are the values which are displayed in figure 4.3 together with the data
as mentioned above. Our data is compatible within one standard deviation with
the continuum extrapolation of the Wilson data and we observe scaling of the
FP action within the statistical errors over the whole range of coarse lattices
considered corresponding to values of N, = 2,3 and 4. Nevertheless, to make

8DBW2 means ”doubly blocked from Wilson in two coupling space”.

9For large distances the coefficient of this term is expected to be determined by string
fluctuations, & = —m/12.

10The details of the corresponding fits can be found in the appendix.
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N, 1 3 2
B 2.927  2.680 2.361

oa® | 0.161(3) 0.286(7) 0.634(22)

T./\/o | 0.624(7) 0.622(8) 0.628(11)

Table 4.8: Values for o and T../+/o.

a more rigorous statement and a more stringent check of the scaling of the FP
action it is certainly necessary to include off-axis potential values in order to
check more reliably the stability of ¢ under variation of the fit range.
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Figure 4.3: T./\/o vs. 1/N? for different actions. See text for details.

4.3.2 1T,

As was already pointed out by several authors [62, 65] there are clearly draw-
backs to using the string tension to set the scale. This is first of all due to
the fact that, since the string tension is a long-distance quantity, one needs the
potential in a regime where the relative errors usually are getting large, and
secondly, however less important for our purposes, the string tension is not well
defined in full QCD. To avoid these problems a new way to set the scale via
the force between a heavy quark and antiquark was introduced [62] in order to
define an intermediate distance scale rq. This section will therefore deal with
the RG invariant quantity ro7., so as to provide a high precision scaling test of
the FP action and to size the remaining lattice artifacts.
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Unfortunately, precise determination of rq/a is missing in the literature ex-
cept for the Wilson action [65, 64] and, unlike to T./+/0, we are not able to
compare our data to other actions such as the Iwasaki, DBW2 or the 1 x 2
tree level improved action. Indeed, the determination of rq/a is a delicate issue
and systematic effects due to different methods of calculating the force can be
sizeable. Due to the fact that extracting the derivative of the potential from a
discrete set of points is not unique, the intrinsic systematic uncertainty is not
negligible at intermediate and coarse lattice spacings a > 0.15 fm. For example,
in an accurate scale determination of the Wilson gauge action in [65] the authors
quote a value of rg/a = 2.990(24) at Sw = 5.7. This is to be compared with
the precision computation of the scale with the same action in [64] where the
authors obtain ro/a = 2.922(9) at the same S-value. In view of the claim in [65]
to have included all systematic errors and the high relative accuracy (~ 0.3%)
of the data in [64], this systematic difference on the 2 — 3% level is a serious
matter. Even on fine lattices there are large discrepancies: at Sy = 6.2 the
authors of [64] obtain rq/a = 7.38(3), while in [72] a value of ry/a = 7.29(4) is
quoted.

In that sense our results concerning ro7,. have to be taken with great care.
Although our determination of ro/a as described in section 4.2.4 yields nice
scaling behaviour of the potential and excellent asymptotic scaling behaviour
of 7o/ a itself, this is rather a proof of our ability to consistently and systemat-
ically extract the scale for all simulations performed. For the use of ro/a as a
quantity to test and compare scaling violations in ro7, we need a more accurate
determination of rg/a as is accessible to us at the moment.

Nevertheless, we try to follow the procedure proposed in [62, 64] as close as
possible. First we perform correlated fits of the correlation matrix elements to
the form Z(r)exp{—(Vo + a/r + or)t} as described in section 4.2.4, but only
locally, i.e. using data between some rp;, and rya.x close to r.. Then the
force is interpolated to arbitrary values of r from these local fits and finally
re/a (and accordingly ro/a) is determined from the relation (4.5). In order to
estimate the systematic errors we calculate ro/a from different small fit ranges
and, correspondingly, different values of ¢ from table 4.1. Then the results
are combined with a weight depending on the error of the quantity'!. The
final results for ro/a are listed in table 4.9 where the first error denotes the
statistical error. The second is the estimate of the systematic error and marks
the minimal and maximal value of 79/a obtained with different fit ranges and
different reasonably chosen values of ¢. The systematic error stemming from
different determinations of the potential values is not taken into account. For
later reference we also determined ro/a for § = 3.40,3.15 and § = 2.86. In
table 4.10 we collect the data for rq7, from our measurements with the FP
action together with the data from measurements with the Wilson action for
comparison. The critical couplings corresponding to N, = 4,6,8 and 12 are
taken from [49] while the values for r/a are from the interpolating formula in
[64]. The quoted errors are purely statistical. The continuum value is our own
extrapolation obtained by performing a fit linear in the leading correction term
1/N2. The data point at N, = 4 was discarded from the fit. Finally, the values
are plotted in figure 4.4 for comparison.

1n addition one could also take into account the x2-value of the corresponding fit as is
done in [65].
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Figure 4.4: 79T, vs. 1/N2 for the Wilson and the FP action. The empty circles
represent data from measurements with the Wilson action and the filled squares
denote the results obtained with the FP action.
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B ro/a
3.400 4.833(39)(1))
3.150  3.717(23)(*1Y)
2.927  2.969(14)( 1))
2.860 2.740(10)(*)7)
2.680 2.237(7)(*i})
2.361  1.500(5)( %)

Table 4.9: The hadronic scale ro/a determined from local fits to the potential.
The first error denotes the statistical error and the second is the estimate of the
systematic error. The results for 8 = 3.40,3.15 and 8 = 2.86 are quoted for
later reference.

N, | Wilson action FP action
2 0.750(3)
3 0.746(3)
4 0.719(2) 0.742(4)
6 0.739(3)

8 0.745(3)

12 0.746(4)
00 0.750(5)

Table 4.10: Results for the critical temperature in terms of the hadronic scale,
roT,, from measurements with the Wilson action and the FP action.

The Wilson action shows scaling violation for roT, of about 4% at N, = 4,
while at N, = 61t is already smaller than about 1.5%. In that sense this quantity
provides a high precision scaling test and thus a very accurate computation of
the low-energy reference scale rq/a on the 0.5% level is of crucial importance.
The lack of data for different actions is an indication that this is indeed a difficult
task. Although the required statistics is in principle accessible to us, we do
not have full control over the systematic ambiguities in the calculation of rq/a
on the required accuracy level. Nevertheless we observe in principle excellent
scaling within 1% or two standard deviations for the FP action even on coarse
lattices corresponding to N, = 3 and 2, however, this statement is moderated in
view of the large systematic uncertainties. The systematic effects are generated
by different methods of extracting the potential values, different procedures of
interpolating and calculating the force, different choices of fit ranges etc.

One way around the caveat is to repeat the same measurements and exactly
the same analysis independently for measurements with the Wilson action in
order to rule out these systematic effects and to reliably detect and to compare
scaling violations for both actions. In any case further studies on the deter-
mination of ro/a are clearly necessary in order to fully gain control over all
possible sources of systematic errors. Unfortunately this is beyond the scope of
the present work.
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4.3.3 1o\/0

As a byproduct of the analysis in the previous two sections we can now look
at another RG invariant product, namely ro+/o. This quantity is not accessible
from the global fits to the potential performed in section 4.2.4 since then \/oa
and ro/a are determined from the same description or parametrization of the
potential data and thus are strongly correlated. This is no longer the case after
the previous analysis, where o is determined from the long range properties of
the potential while rq is calculated from local fits only where the precise form
of the fitting ansatz is irrelevant.

In table 4.11 we have collected the resulting values of rg\/o when rg/a is
taken from table 4.9 and ca? from table 4.8. We also list the results from
the potential measurements at the three additional -values 8 = 2.86,3.15 and
3.40. We can extrapolate to the continuum either by performing a fit linear
in (a/rg)? or by fitting a constant in order to obtain roy/o = 1.193(10) and
rov/o = 1.193(6), respectively. For comparison we calculated the data for the
Wilson action from the interpolating formula for r¢/a in [64] and the string
tension parametrization in [65]. The continuum extrapolation for the Wilson
data is from the analysis of Teper in [70].

B 7“0\/5

FP action

2.361 1.194(21)
2.680 1.196(15)
2.860 1.190(23)
2.927 1.191(12)
3.150 1.185(16)
3.400 1.198(12)
00 1.193(10)
Wilson action

5.6925 1.148(12)
5.8941 1.170(19)
6.0624 1.183(13)
6.3380 1.185(11)
00 1.197(11)

Table 4.11: rg+/c for the Wilson and the FP action.

Figure 4.5 shows the scaling behaviour of r¢+/o for the Wilson action (empty
circles) and the FP action (filled squares) as a function of (a/rg)?>. The error
bars are purely statistical and are dominated by the uncertainty from the string
tension. Therefore the systematic ambiguities possibly present in rg/a are not
visible within the shown error bars.

The Wilson action shows a scaling violation of about 4% at 8 = 5.6925(N, =
4), while no scaling violation is seen for the FP action even on lattices as coarse
as 8 = 2.361(N, = 2). We would like to emphasize again that this is a non-
trivial result, since ro/a and \/oa are determined completely independent of
each other. However, with the data presently available to us it is difficult to

extract the string tension with the accuracy needed to see a striking difference
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to the Wilson action for §-values corresponding to N, > 4. This is mainly due
to the lack of measurements of the off-diagonal potential values.
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Figure 4.5: Scaling behaviour of 79+/c for the Wilson action (empty circles) and
the FP action (filled squares). The scale on the x-axis is chosen for convenience.

4.4 Conclusions and outlook

In this chapter the parametrized FP action was subjected to several scaling tests.
By means of the static quark-antiquark potential and the scaling of roT., T./\/o
and rgy/o we have assured that the action behaves well and shows no irregu-
larities over the whole range of studied lattice spacings. In all quantities under
investigation we observe excellent scaling within the standard errors or 2 % even
on lattices as coarse as a ~ 0.2 — 0.3 fm.

One important outcome of the studies in this chapter is, that the hadronic
scale rg/a introduced by Sommer [62] and pursued by [64] is not appropriate
for lattice spacings larger than around a ~ 0.1 fm. The intention of the authors
to have a new way of setting the scale in a consistent way without introducing
additional lattice artifacts is certainly appreciable. However, the scale incorpo-
rates large systematic ambiguities depending heavily on the techniques used for
extracting it. This makes it nearly impossible to compare the results of different
groups reliably using ro/a at lattices spacings around a ~ 0.1 fm. In this regime
it seems more preferable to use the effective string tension o to set the scale.

Regarding our calculations it would be desirable to measure the effective
string tension using off-axis potentials in the future. As was already pointed out,
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this would allow a more reliable determination of the physical scale, especially
on coarse lattices. In addition, one could determine the potential gap A along
the lines in [64] and check the scaling behaviour of roAl,,. This quantity shows
lattice artifacts as large as 20% at Sw = 5.8 and 12% at Sw = 5.95.



Chapter 5

Glueballs

5.1 Introduction

The rich structure in the hadron spectrum of QCD is expected to reveal bound
states consisting of (mainly) gluons, so called glueballs. Unfortunately, cal-
culating the properties of such states directly from first principles using the
QCD lagrangian proves to be a difficult task and standard perturbative meth-
ods fail. One possibility is provided by numerical computations using lattice
QCD and, indeed, glueball masses were among the first quantities to be calcu-
lated on the lattice. Most of these calculations have been done in the quenched
approximation®, mainly because glueballs are the actual excitations in the pure
gauge sector. There also exist studies of effects from dynamical sea quarks and
glueball-meson mixing on the glueball spectrum from the SESAM and TxL col-
laborations [72, 74, 75] and from the UKQCD collaboration [76], however, the
results are not yet conclusive [75].

On the experimental side there is some evidence found in several experiments
for the existence of exotic glueballs or hybrid particles consisting of quarks with
gluonic excitations. The exotic glueballs, sometimes called ”oddballs”, have ex-
otic quantum numbers, e.g. 07 =, 1T, and are particularly interesting in lattice
gauge theory because they can not mix with conventional meson states. Per
contra, the glueballs with the lowest masses have conventional quantum num-
bers. They are sitting in a dense background of conventional meson states and
it is thence difficult to distinguish them in an experiment. For further details
on the experimental aspect of the glueball spectrum and possible glueball can-
didates we refer to a recent article [77] reviewing the light meson spectrum.

The main obstacle in the computations of glueball masses on the lattice is
the fast decay of the signal in the correlation functions of the gluonic excitations,
due to the fact that the glueball masses are relatively large (mg > 1.6 GeV). It
turns out to be notoriously difficult to extract the glueball masses before the sig-
nal disappears in the relatively large noise of the measured correlation functions
and thus a small lattice spacing a is required to follow the signal long enough.
On the other hand, the physical lattice volume should be larger than L > 1.2

!For comprehensive reviews of such calculations see [70] and [73].

61
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fm to avoid finite size effects. This finally results in a large L/a making it hard
to obtain the statistics which is usually required. One possible way around the
caveat is the use of anisotropic lattice actions which have a finer resolution in
time direction, a, < a,, and thence allow to follow the signal over a larger
range of time slices. Although this idea is not new [78], it has been revived only
recently by Morningstar and Peardon [79, 80]. Using an anisotropic improved
lattice action they investigated the glueball spectrum below 4 GeV in the pure
SU(3) gauge theory and improved the determinations of the glueball masses
considerably compared to previous Wilson action calculations. Recent Wilson
action calculations comprehend works by the UKQCD collaboration [81] and
the GF11 group [82, 83]. It can be said that all three calculations are in rea-
sonable agreement on the masses of the two lowest lying 07+ and 27+ glueballs.

Despite this agreement Wilson action calculations of the 0+ glueball mass,
however, show huge lattice artifacts of around 40 % at coarse lattice spacings
a ~ 0.15 fm and still 20 % even at modest lattice spacings a ~ 0.10 fm. From
this point of view the 07F glueball mass is particularly interesting, besides
its physical relevance, since it provides an excellent test object on which the
scaling behavior of different actions can be checked and the achieved reduction
of discretization errors can be sized. In this sense let us emphasize that our
intention here is twofold: firstly, our calculation provides a new and independent
determination of glueball masses using FP actions, and secondly, we aim at using
the glueball spectrum, in particular the mass of the 0T glueball, as another
scaling test of the FP action. Although we observe that the FP action scales well
in quantities like roT,, T./+/0 or ro4/0, lattice artifacts could be, in principle,
quite different in other physical quantities, in particular romg or mg/+/o.

A gystematic determination of the glueball spectrum is of course much more
involved. For example it requires a careful differentiation of the single glueball
state from two-glueball and torelon-pair states having zero total momentum.
The latter can rather easily be identified through a finite size scaling study,
since the torelon mass is strongly dependent on the lattice volume. In addition,
such a study is needed to measure the systematic effects inherited in the results
from finite volume. Finally, after performing the continuum extrapolation one
has to reliably identify the continuum spin content of each energy level. Such a
systematic study is of course beyond the scope of the present work.

This chapter is organized as follows. In section 5.2 we first describe the
construction of glueball operators from Wilson loops. This involves some group
theory and provides a nice and pedagogical application of representation theory.
In section 5.3 we describe the details of the simulations including the generation
of the gauge field configurations and the measurements of the operators. The
extraction of masses from the Monte Carlo estimates of glueball correlation
functions are presented in section 5.4 together with a discussion of the scaling.
Finally, the main results are summarized in section 5.5.

5.2 Glueball operators from Wilson loops

In this section we describe the construction of the operators measured in the
glueball simulations. We first review the characterization of glueball states ac-
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cording to their transformation properties under irreducible representations of
the rotation group following closely [84] and [85]. Then we present the construc-
tion of basis functions of irreducible representations in general and later specify
to operators transforming under the cubic group Op. Some properties of the
cubic point group are summarized in appendix E.

5.2.1 Glueball states

Physical states in the Hilbert space of lattice gauge theory are gauge invariant
and they can be obtained by applying gauge invariant operators to the pure
gauge vacuum. Of particular interest in our simulations are space-like Wilson
loops in the fundamental representation of SU(3). Since we are aiming for
the determination of masses of glueball states, we are only considering zero-
momentum states, i.e. translationally-invariant operators.

In the continuum limit the Hamiltonian is rotationally invariant and its
eigenstates can be characterized according to the unitary representations of the
group SU(2) in general, and to those of the three-dimensional rotation group
SO(3) for bosonic states in particular. In addition the Hamiltonian is invariant
under parity and charge conjugation, and therefore the states can further be
classified according to having eigenvalues P = +1 under parity and C' = +1
under charge-conjugation parity, respectively. Thus we may label the eigenstates
of the Hamiltonian corresponding to glueball states with definite mass by |¢) =
|JPC), where J denotes the spin of the corresponding irreducible representation
Dy of the rotation group.

For finite values of 8 we work on a hypercubic lattice and continuous ro-
tation symmetry is broken down to exact cubic symmetry. On the lattice the
role of the Hamiltonian is adopted by the transfer matrix. Thence we are now
considering eigenstates of the transfer matrix, which belong to an irreducible
representation of the cubic group O. Since the cubic group is a subgroup of
SO(3), any representation D; induces a representation on the group O, the
so-called subduced representation D?. In general, the subduced representa-
tion is no longer irreducible and can thus be decomposed into the irreducible
representations I'? of the cubic group O,

DY =r'el?e.... (5.1)

In table 5.1 we list for convenience the subduced representations of the rota-
tion group up to J = 6. The labeling of the irreducible representations of the
cubic group follows the standard notation, where one-dimensional representa-
tions are denoted by A, two-dimensional irreducible representations by E and
three-dimensional irreducible representations by 7.

As a consequence of this decomposition the quintuplet of degenerate states
of a spin J = 2 particle in the continuum for example will be split up by the
lattice regularization into a doublet and a triplet transforming under E and T,
respectively. The mass splitting between the two representations will disappear
as we approach the continuum limit and full rotation symmetry is restored.
On the other hand, every state in the lattice theory transforming according
to an irreducible representation I'? of the cubic group can be expanded in the
continuum limit into eigenstates of spin .J,

7y = 1) (5.2)
J
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re J=0 1 2 3 4 5 6
Ay 1 0 0 0 1 0 1
Ay 0 0 0 1 0 0 1
E 0 0 1 0 1 1 1
T 0 1 0 1 1 2 1
T 0 0 1 1 1 1 2

Table 5.1: Subduced representations of the rotation group up to J = 6. Given
are the multiplicities with which the representation I'? can be found in the
subduced representation DJO. The labeling of the irreducible representations is
explained in the text.

However, spin J can contribute to this superposition only if ['? is contained in
D?. Usually, the lowest spin contained in I'” belongs to the lowest mass. Nev-
ertheless, a unique identification of glueball states on the lattice with continuum
spin states is possible only sufficiently close to the continuum limit when differ-
ent representations in a given column of table 5.1 become (nearly) degenerate.

5.2.2 Construction of basis functions of irreducible repre-
sentations

In this section we describe the general procedure for constructing basis functions
of irreducible representations. This involves the character projection operator
defined by

pr =2 S o) p(T), (5.3)
9 TeG

where p labels the irreducible representations I'” of dimension d), of a finite group
of coordinate transformations G of order g, x?(T") being the character of TeG
in T? and P(T) the unitary operator in the Hilbert space L? of the coordinate
transformation TeG.

PP has the property of projecting out of a function ¢ eL? the sum of all the
parts transforming under I'?. Having chosen a (normalizable) ¢ such that PP¢
is not identically zero, we construct P(T')(PP¢) for each TeG. Each of these
are linear combinations of the d, basis functions of I'). From these functions
we abstract d, linearly independent functions and apply the Gram-Schmidt or-
thogonalization to obtain a set of orthonormal basis functions of the irreducible
representation.

In practice, given a non-zero PP¢, we construct ) . P(T;)(PP¢), where
>, P(T;) is an appropriately chosen linear combination of the unitary coor-
dinate transformation operators. Then from this first basis function all others
are generated by applying appropriate rotation operators?. This procedure en-
sures that each set of basis functions obtained from different functions ¢; eL?

transform exactly in the same way under a given irreducible representation I'?.

2For details see section E.3 in the appendix.
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5.2.3 Irreducible representations of the cubic group on
Wilson loops

In this section we construct the irreducible representations of the cubic group
Oy, on space-like Wilson loops up to length eight. To make the connection to
the construction presented before, let us note that the Wilson loops acting on
the vacuum state take over the role of the function ¢ in the Hilbert space L? as
introduced in the previous section®.

All prototypes of Wilson loop shapes up to length eight are displayed in
figure 5.1. Each of these shapes is characterized by an L-tuple describing the
path of the corresponding loop,

L
(fi,- fr) with " fi=0, (5.4)
i=1

where the fl are unit vectors corresponding to the space-like coordinates. By
[f1,--., fr] we denote the equivalence class of L-tuples which are identical up
to cyclic permutations. Under C-parity we simply have

C[fla---afL]:[_fL:_.fALfla-"s_fl]a (55)

and the combinations

oo file =L fil 2 (= = fi] (5.6)

are even and odd under the C-parity transformation, respectively. This cor-
responds to taking the real or the imaginary part of the Wilson loop under
consideration.

A (reducible) representation M of Oy, on operators of a given fixed shape is
now defined through

Mg[fla---:fL]:l:i[Mgfla"'aMgfL]:l:: VgEOh, (57)

where M, is the matrix corresponding to the group element g in the fundamental
representation. The representation M has dimension d, where d is the number
of different spatial orientations of the given shape. In table 5.2 we have listed
the dimensions of the generated representations including C-parity on every
loop shape.

loop shape # 1 2 3 4 5 6 7 8 9 10 11
dimension d 6 12 24 8 6 24 24 96 48 12 48

loop shape #| 12 13 14 15 16 17 18 19 20 21 22
dimension d 24 12 24 6 12 12 48 12 48 24 96

Table 5.2: Dimension d of the representation of Oy x C on the loop shapes, i.e.
the number of different orientations.

31n particular we have ¢[U] = W [U]pvac[U], where W[U] is a Wilson loop built from gauge
links U and ¢vac[U] is the vacuum state invariant under applications of the transfer matrix.
The symmetry properties of ¢[U] are then characterized by those of the Wilson loops W[U].
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Figure 5.1: Prototypes of space-like Wilson loop shapes up to length 8.
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The irreducible contents of the representation M are determined by means
of the character relation (E.5). In practice we first construct a matrix represen-
tative in each conjugacy class C for every representation M with fixed C-parity
and from this its character x(C) in this representation by taking the trace. The
multiplicity np of the irreducible representation I'? in I' = M are then calcu-
lated by

ny = 15 3 mex(OX(©), (5.8)
C

where xP(C) can be read from table E.2 and n¢ is the number of elements in
the conjugacy class C. The results are listed in table 5.3 and 5.4.

shape A7+  A;T ETT Ty T, 7 A7 A T B T, 7 T, ¢

#1 1 0 1 0 0 0 0 0 0 0
#2 1 1 2 0 0 0 0 0 0 0
#3 1 0 1 0 1 0 0 0 1 1
#4 1 0 0 0 1 0 0 0 0 0
#5 1 0 1 0 0 0 0 0 0 0
#6 1 0 1 0 1 0 0 0 1 1
#7 1 0 1 0 1 0 0 0 1 1
#8 1 1 2 3 3 1 1 2 3 3
#9 1 0 1 1 2 1 0 1 1 2
#10 1 1 2 0 0 0 0 0 0 0
#11 1 1 2 1 1 0 0 0 2 2
#12 1 1 2 1 1 0 0 0 0 0
#13 1 0 1 0 0 0 0 0 0 1
#14 1 0 1 1 2 0 0 0 0 0
#15 1 0 1 0 0 0 0 0 0 0
#16 1 1 2 0 0 0 0 0 0 0
#17 1 0 1 0 1 0 0 0 0 0
#18 1 0 1 1 2 1 0 1 1 2
#19 1 0 1 0 1 0 0 0 0 0
#20 1 0 1 1 2 1 0 1 1 2
#21 1 0 1 0 1 0 0 0 1 1
#22 1 1 2 3 3 1 1 2 3 3

Table 5.3: Irreducible contents of the C-parity plus representations of the sym-
metry group of the cube on Wilson loops up to length eight.

The orthogonal wave functions of the irreducible operators which can be
built from Wilson loops up to length eight are listed in appendix E.3 in the
tables on page 107 — 113. Note that the expressions for loop shape #8, 9, 11,
18, 20 and 22 are too lengthy and can thus not be displayed.
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0
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1
0
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Table 5.4: Irreducible contents of the C-parity minus representations of the

symmetry group of the cube on Wilson loops up to length eight.
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5.3 Simulation details

We performed simulations at three different lattice spacings in the range 0.1 fm <
a < 0.18fm and volumes between 1.4 fm and 1.8 fm. The simulation parame-
ters for the different runs are given in table 5.5, where we list the values of the
couplings, the lattice sizes and the relevant numbers for the obtained statistics.
We also give our estimates of the hadronic scale rg/a and the corresponding
approximate lattice spacings in units of fermi for convenience.

B lattice al[fm] ro/a # bins bin size meas./bin
3.40 141 0.10 4.833(39) 206 420 70
340 144 0.10 4.833(39) 152 200 50
315 124 0.13 3.717(23) 202 500 50
2.86  10% 0.18 2.740(10) 160 200 50

Table 5.5: Run parameters of the glueball simulations. Values for the cou-
pling 3, the lattice size and the obtained statistics are listed. The estimate of
the hadronic scale ro in terms of the lattice spacing a is given as well as the
approximate lattice spacing in units of Fermi.

The gauge field configurations were updated by performing a compound
sweep consisting of one over-relaxation sweep and one standard Metropolis
sweep.

We first performed two ”small” preliminary simulations at § = 3.40 and
B = 2.86. After each compound sweep we measured five different loop shapes,
#6,8,11,14,22, on five smearing levels S,,n = 2,4,...,10 with smearing pa-
rameter* A\, = 0.2 and subsequently projected into the Af*-channel.

In the two large simulations we measured all 22 Wilson loop shapes on the
same smearing levels as before (S,,n = 2,4,...,10; Ay = 0.2) and projected
them into all 20 irreducible glueball channels. Measurements were taken after
three and five compound sweeps at § = 3.40 and 8 = 3.15, respectively.

The projections of the loop shapes into the different channels were done ac-
cording to the description in section 5.2. Then the correlator matrix elements
were constructed from the projected operators and Monte Carlo estimates were
obtained by averaging the measurements in each bin. During a simulation run
we measure all possible ’polarizations’ in a given channel and collect them to-
gether on the level of the correlation matrix. This will eventually suppress the
statistical noise by a factor of the dimension of the representation, if the dif-
ferent polarizations are anti-correlated. Finally, the resulting large correlation
matrices from each bin were stored for later analysis. Of course the smearing
and in particular the measurements of the loops takes a considerable part of
the simulation time and can in principle be reduced by considering only a small
number of shapes. On the other hand one is interested in having as large as
possible the set of operators for constructing the wave function of the ground
state. In addition, having measured all loop shapes up to length eight in the
two larger simulations allows us to identify the important loop shapes for future
simulations. However, only a moderate amount of work has been devoted to
this kind of analysis up to now, cf. section 5.4.2.

4For details of the smearing we refer to section 4.2.3.
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For the extraction of the glueball masses one has to consider vacuum-sub-
tracted operators. For this purpose we also measured and stored the expectation
values of all the operators in each bin. Vacuum subtraction is required only in
the A *-channel since it has the same quantum numbers as the vacuum. All
other channels have a vanishing vacuum expectation value, thereby yielding a
check for the correct construction of operators in each of the channels. We
investigated different methods of removing the vacuum expectation value and,
finally, followed a strategy which is outlined in the next section amongst other
details of the analysis.

5.4 Analysis details

In the final analysis phase for extracting the glueball masses we resort to the
variational techniques described in section D.1 and D.2. Although the procedure
is straightforward in general, let us put some remarks which are related to the
analysis of the glueball masses in particular.

In a given symmetry channel we have to find a linear combination of the basic
operators which overlaps best with the wave function of the ground state and,
if necessary, of the next few excites states. This can be achieved by choosing
the linear combination which minimizes the effective mass on a given time slice
at tp and amounts to solving the generalized eigenvalue equation

C(t1)v = e Pl1=t) O (tg)w. (5.9)

This, however, requires a positive definite C(to), which in general is not fulfilled
for tg > 1 due to statistical errors. In particular the large number of opera-
tors measured in the glueball simulations yield a few very small or even slightly
negative eigenvalues of C'(to) with large relative errors. This is due to the fact
that some of the operators are strongly correlated and therefore not linearly
independent on the given MC sample, but can be avoided by first diagonalizing
and then projecting and truncating C(to) to an appropriate subspace of oper-
ators as described in section D.1. However, the large statistical noise in some
of the operators can even spoil the diagonalization of C'(tg) in such a way that
remnants of the unphysical modes are still present even after the truncation to
a smaller operator basis.

Therefore we choose right from the beginning a set of operators which we
consider to be well measured (cf. section 5.4.2). On this set the whole procedure
is numerically stable and well defined. Nevertheless, the choice of operators is
arbitrary to some extent and an optimized choice will presumably improve the
stability of the analysis. It would be most interesting and rather easy to inves-
tigate for example the overlap of each of the operators with the ground state.
First steps in this direction are already undertaken, but it requires further work.

Another remark concerns the vacuum subtraction necessary in the Af*-
channel.  To obtain vacuum-subtracted operators one usually considers
" (1) = ¢(7) — (0|¢(7)|0). However, we follow a different strategy and treat
the vacuum as an additional state carrying zero energy. As it turns out the vac-
uum state can be determined with very high accuracy and it is safe to consider
only the operator basis orthogonal to the vacuum in the fitting procedure. For
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this purpose we cut out the vacuum state obtained from solving the generalized
eigenvalue equation (5.9), i.e. we only consider the correlation matrix®

Ch (1) = (vi, CM (t)vy), (5.10)

with ¢, j running from i, = 2, ..., K < M in the further analysis. In our experi-
ence this strategy yields the most stable subtraction of the vacuum contribution
with respect to the statistical fluctuations of the subtracted operators.

In the last step for extracting the glueball masses the large correlation ma-
trices are truncated down to a 1 x 1 or 2 x 2 matrix which is subsequently
fitted in the fit range tpiy . . . tmax taking both temporal correlations and cor-
relations among the operators into account. The choice of tyax is not crucial
and is usually taken according to the relative error of the matrix elements under
consideration and the x2-function. More important is the correct choice of tmin.
Since excited glueball masses are rather high we do not expect large contamina-
tion of the ground state correlators from excited states even on time slice t = 1
and therefore ¢ty = 1 was usually chosen. In particular this choice is safe if we
fix to = 1 and ¢; = 2 rather than t; = 0 and ¢; = 1. Indeed, in the former case
the x2-function remains more stable when we increase tmin = 1 to tmin = 2 as a
check for the consistency in the extracted values for the masses. As an example
take the results in table F.6 for the A *-channel at 8 = 2.86, where we observe
a large shift in the fitted mass for the choice o = 0 and ¢; = 1 while no change
is seen for the choice tg = 1 and ¢; = 2 when ¢,,;, is increased from 1 to 2.

One remark is in order concerning the mass estimate in the A *-channel of
the § = 3.15 simulation. There we observe a systematic difference of the mass
estimate depending on whether ¢y, = 1 or 2 and lying significantly outside
the statistical error of the usually chosen ¢y, = 1 value. In order to take this
systematic shift into account we calculate an average of the two highlighted
values in table F.5 taking their errors as a measure of the weight. To be on the
safe side the final error is just the simple average of the two errors and covers
both significantly different values within one standard deviation.

5.4.1 Results

The results of the fits to the glueball correlators are collected in the appendix in
tables F.3 — F.6 where we list the values of ¢q and ¢, the number of operators,
Nop, kept after the truncation in C(tp), the fit range tmin . . . tmax, the x? per
degree of freedom, x2/Npr, and the mass estimate. All temporal correlations
and correlations among the operators are taken into account by performing
correlated fits as described in section D.2. The covariance matrix is calculated
from Jackknife samples and the error is estimated using a Jackknife procedure.
We include the results of different fits in the tables in order to give an impression
on the stability of the fits. In each channel the result highlighted in boldface is
our final choice and represents a most reasonable mass estimate for the given
channel. These final mass estimates are collected in table 5.6 for convenience.
To compare these values it is convenient to use ry to set the scale. In table
5.7 we list our estimates of the glueball masses expressed in terms of rq, while
figure 5.2 and 5.3 show our values for the Af*- and the E*+, T, -channel,
respectively, together with results from different calculations with the Wilson

5See section D.1 for notations.
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3=28 (=315 B=340 5 =340

ATT 1.411(96) 1.054(56) 0.831(33) 0.836(23)
Ett 1.534(62) 1.233(48)
T 1.609(55) 1.234(28)
AT 1.65(18) 1.395(86)
E—+ 1.97(20) 1.681(72)
T, * 1.92(11) 1.631(72)
T 2.10(18) 1.64(16)

Table 5.6: Final glueball mass estimates in terms of the lattice spacing, amg.

action (crosses) and the calculation of Morningstar and Peardon with a tree
level /tadpole improved anisotropic action (empty circles).

J =28 p=315 B=340 [ =340
AFT 0 3.87(27) 3.92(23) 4.02(16) 4.04(12)
Ett 2 5.70(23) 5.96(24)
T 2 5.98(21) 5.96(14)
AT 0 6.13(67) 6.74(42)
E-t 2 7.32(74) 8.12(35)
Ty 2 7.14(41) 7.88(35)
T~ 1 7.81(67) 7.93(78)

Table 5.7: Final glueball mass estimates in terms of rg, romg. The continuum
spin interpretation of each channel is given for convenience.

It is interesting to compare our results with the continuum values from var-
ious collaborations. For this purpose we resort to [86] where the results of refs.
[70, 81, 83] have been expressed or converted in units of ro using the interpolat-
ing formula for the Wilson action [64] and, whenever necessary, the continuum
extrapolation has been redone. The final results are listed in table 5.8. Our con-
tinuum result is an extrapolation to the continuum using a fit function linear in
(a/rp)?, which amounts to

romg++ = 4.12(21) — (2.1 £ 3.1) <T3>2 (5.11)

The x? per degree of freedom of the fit is x>/Npr = 0.07. The data in the
other channels is too little to be extrapolated to the continuum and we simply
quote the masses obtained on the finest lattice (¢ = 0.10 fm) in brackets. It
is interesting to compare our results with the continuum values from the other
groups listed in table 5.9. Note in particular our values for the degenerate 2T+
state, BT and T, ", which agree very well with the continuum values of other
groups. We observe restoration of the degeneracy in the 27+ and 2=F channel
within the statistical errors.
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Figure 5.2: Glueball mass estimates for the A7 " channel. Results from simula-
tions of the Wilson action (crosses) and a tree level /tadpole improved anisotropic

action (empty circles) are shown together with the results obtained with the FP
action (filled circles).

Collab. roMo++ roMo++ year
M&P [80] 121(11)(4) 5.85(2)(6) 1999
GF11 [83] 4.33(10) 6.04(18) 1999
Teper [70] 4.35(11) 6.18(21) 1998
UKQCD [81] 4.05(16) 5.84(18) 1993
FP action 4.12(21) [5.96(24)] 2000

Table 5.8: Comparison of the two lowest glueball masses in units of rq. The
27+ value is not extrapolated to the continuum but denotes the mass obtained
at a lattice spacing a = 0.10 fm.

Collab. roMmo—+ ToMo—+ ToMy+- year
M&P [80] 6.33(7)(6) 7.55(3)(8) 7.18(4)(7) 1999
Teper [70]  5.94(68) 8.42(78) 7.84(62) 1998
FP action [6.74(42)] [8.00(35)] [7.93(78)] 2000

Table 5.9: Comparison of glueball masses in units of rg. Values in brackets

denote masses obtained at a lattice spacing a = 0.10 fm and are not extrapolated
to the continuum.
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Figure 5.3: Glueball mass estimates for the 2+ channel. Results from sim-
ulations of the Wilson action (crosses) and a tadpole and tree level improved
anisotropic action (empty symbols) are shown together with the results obtained
with the FP action (filled symbols). Squares and circles denote the ET* and
T2++ mass estimates, respectively.
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5.4.2 Signal/noise ratio of the operators

As already mentioned before it is interesting and even necessary to analyze
which operators are well measured in a simulation and which operators have a
large contribution to a given glueball state and thus have a large overlap with
the corresponding wave function. This can give some hints about the size of the
glueballs and might be helpful for the choice of operators and smearing schemes
in future simulations. It is for this reason that we make statements even if we
can only give a tendency for the preference of some smearing schemes.

Here we only report on our findings of what the signal/noise ratio of the op-
erators concerns. The analysis of the overlap of each operator with the ground
state has not yet systematically been done.

In each channel we analyzed the signal of the operators at § = 3.40 by
looking at the decay in time of the diagonal correlators. As a measure of the
quality of an operator we take the relative error of the corresponding signal.
”Good” operators have a signal which can be followed over three time slices
with an accuracy of around ten percent or even four time slices when accepting
an error less than 50 percent. ”Bad” operators can be measured accurately
enough (on the ten percent level) only on time slice 7 = 0 and 1, while already
7 = 21is lost in the noise completely. Including such operators in the analysis can
be dangerous, because they may spoil the solution of the generalized eigenvalue
problem when solved on ty = 1,#; = 2, yielding an unphysical guess for the
wave functions, or they may even introduce errors already when truncating the
correlation matrices down to a stable subspace of C'(tg = 1).

Of course the above classification is not clearcut but rather depends on how
the operators behave compared to others in the same channel, simply meaning
that we sometimes accept operators on an accuracy level which would be reason
enough for rejecting them in other channels.

In this sense the following results of the analysis should only be understood
as a rough guide, and one has to keep in mind that the preferred operators and
smearing schemes may depend on the considered lattice spacing.

In the A" —channel we could well measure all 22 loop shapes on smearing
schemes 3, 4 and 5 except loop shape #16 and 17, which could not be measured
with comparable accuracy.

The A2++70hannel could not be measured at this lattice spacings, however,
operators on low smearing levels seem to have a larger signal and smaller relative
error. Nevertheless, the results indicate that shape #16, 1, 12 and 11 are the
most problematic to measure (in the given order).

The E+*—channel seems to prefer smearing schemes 3, 4 and 5 at the consid-
ered lattice spacings, however the shapes #1, 9, 16, 17 and the second projection
of #2, 10 and 22 could not be well measured even there.

In the T;" " —channel the signal was again too weak to yield any reliable result,
but clearly the first projection of shape #8 and 22 are much more difficult to
measure than all the others.

Analyzing the signal of the operators in the T, " —channel we found that the
shape #7, the first and third projection of #8, as well as shape #17, 19, the
first projections of #18 and 20 could not be well measured on all the smearing
schemes.

In the A1_+70hanne1 all operators could be well measured, nevertheless we
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excluded smearing scheme 1, 2 and 3 in our analysis improving the result con-
siderably.

While none of the ten measured operators in the A;*Lfchannel gave any
useful signal, we could still make out a tendency for the preference of lower
smearing schemes.

For analyzing the E~T—channel we excluded the first two smearing schemes
and the first projection of shape #8 and 22, however the lattice spacing is
already too coarse to get a reliable signal.

The T, T-channel shows a clear preference for the lowest two smearing
schemes and shape #9, 11 and 22.

In the T, T—channel we excluded the first two smearing schemes and in
smearing scheme 3, 4 and 5 the operators #7 and the second projections of #8§,
18 and 20.

While in the channels A7, T,t~, A7, A, ~, E~~ we did not find any ac-
ceptable signal, AJ~ seems to prefer #9, 14 and 22, E*~ #7, 9, 14 and 22
on the lowest smearing scheme, T1+_ #5, 6, 7, projection two and three of #8,
projection two of 9, and shapes #10, 11, 14 and 22,

The T| ~—channel shows a tendency for the lowest smearing scheme and the
shapes #8, 9, 18, 20, 21 and 22.

Finally, the T, ~—channel prefers shape #6, 8, 9, 11 and 22 on the lower
smearing schemes.

5.5 Conclusions and outlook

The main result of this chapter is the determination of the 0T+ and 27 glueball
masses using the parametrized FP action. We obtain 1627(83) MeV for the 0++
and 2354(95) MeV for the 27 glueball mass®, respectively. We observe scaling
within one standard deviation and restoration of the degeneracy in the 2+ and
27F channel. Mass estimates of the 077,27F and the 17~ glueball are also
obtained and they agree with the best earlier results within our albeit large
statistical errors. Besides being interesting physical results by themselves, this
calculation provides a determination of glueball masses with a very different
formulation of lattice gauge theory and, in that sense, confirms universality.

In addition, we observe scaling of the results within one standard deviation
and the perfect properties of the parametrized FP action as seen in chapter 4
are confirmed.

As mentioned in the introduction, it is well known, that glueball masses are
difficult to measure on the lattice. Indeed, we can barely resolve higher lying
glueball states and measuring excited states becomes impossible at the lattice
spacings currently available to us. In this sense we can not really take advantage
of the parametrized FP action, which is intended to be used on coarse lattices.

One way around this difficulty is to use anisotropic lattices, where the lattice
spacing in temporal direction is much smaller than in spatial direction, a; < as.
The construction of an anisotropic parametrized FP action is currently under
investigation and we refer to the last chapter for an outlook.

60nly the 01+ value represents a continuum value, while the 2+ value corresponds to
the one measured at a lattice spacing of a = 0.10 fm.
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Conclusions and outlook

In this work we have presented a new parametrization of the FP action of a
specific RGT. The new parametrization reproduces the classical properties of
the action excellently. This action was tested extensively on the static quark—
antiquark potential, the finite temperature phase transition and on the glueball
spectrum.

The approach we use is building simple loops (plaquettes) from single gauge
links as well as smeared links. We analytically calculated the couplings of the
FP action in the quadratic approximation and care was taken not to violate the
O(a?) (“on-shell”) Symanzik conditions. It is interesting to note that within
this new ansatz the second Symanzik condition is automatically fulfilled. We
also checked that the parametrization respects approximate scale invariance of
instanton solutions.

We parametrized the FP action at lattice spacings suitable for performing
simulations on coarse lattices in physically interesting regions. Since we are not
only parametrizing the action values but also the derivatives with respect to the
gauge fields as well, the action is especially suited for the use in Monte Carlo
simulations.

For testing the action we measured the critical temperature and the static
quark—antiquark potential at various values of the gauge coupling. We pro-
duced physically interesting results by measuring the glueball spectrum in all
symmetry channels. The problematic A7 —channel is an excellent candidate
for testing the improvements and it indeed shows much reduced lattice artifacts
at moderate lattice spacing a ~ 0.1 fm as compared to the Wilson gauge action.
We have determined glueball masses of 1627(83) MeV for the 07+ glueball in
the continuum and 2354(95) MeV for the 27+ glueball at a lattice spacing of
a = 0.1 fm.

The results of this work are now being processed for publication.

Another project currently under study is the construction of a parametrized
FP gauge action on anisotropic lattices. This generalization has not been done
until now but it is needed especially to tackle the full glueball spectrum including
excited states and finds its application in a wide range of problems like the
determination of the string tension or finite temperature physics.

We have new ideas for the construction of such anisotropic FP actions and for
more physical ways of extracting the effective renormalized anisotropy a./a,,

7
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which is a particular problem in anisotropic lattice studies. We analytically
calculated the couplings and the spectrum in the quadratic approximation as
well as the tree level perturbative static potential. As expected the spectrum is
exact and has the correct anisotropy, while the static potential shows excellent
rotational symmetry and has very little lattice artifacts even at distance r = 1.
The main idea for the construction of an anisotropic FP action on coarse lattices
is to use the parametrized FP action presented in this work as a starting point
and to perform one or several RGT steps in the spatial directions only. In this
way one obtains an action on an anisotropic lattice, which shares all the classical
properties of the isotropic counterpart.

Different possibilities for the parametrization of the action at coarse lattice
spacings are currently under investigation.



Appendix A

The O(a?) and O(a?)
Symanzik conditions

A.1 The O(a?) Symanzik conditions

In this appendix we derive the O(a?) Symanzik conditions [87, 88, 89, 90, 91, 92]
by considering constant non-abelian gauge potentials. The formulas apply to
both SU(2) and SU(3).

It is useful to first define for a general gauge field in the continuum a
dimension-4 operator

1 .
Ry = —5%23 (72,) (A.1)

and three dimension-6 operators:

R = %;Tr((Dﬂf,“,)Q), (A.2)
1 2

R, = 5%}%((17”7“)), (A.3)

Ry = %%Tr(pﬂfﬂkpyfm). (A.4)

The equations of motion are }_ D,F,» = 0 hence the O(a?) (on shell’)
Symanzik conditions imply only that the coefficients of R; and Ry vanish when
one expands a lattice action in powers of the lattice spacing a. The coefficient
of R3 is not required to vanish (and usually it does not for the FP action).

Let us now specify to constant gauge potentials, 0,4, = 0. In the continuum
one has

-7:,u1/ = [Au;Au] (A5)

and
D,F,\ = [Au,f,,)\]. (A.6)

Here A, and F,, are chosen to be anti-hermitian.
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We can put a constant non-abelian gauge field on the lattice by defining
) 1
A, =ioy, - 3% (A.7)

where oy, = k = 1,2,3 are the Pauli matrices, while 04 = (01 + 02 + 03)/V/3.
Expanding any lattice gauge action in powers of o, and identifying the coeffi-
cients of the operators defined in (A.1)-(A.4) one derives the O(a?) Symanzik
conditions and a normalization condition.

For the specific lattice gauge action ansatz considered in section 2.3 one
obtains!

1
> w = 7 Fo(1+ (44 2m)cr)
u<v

1

3
+ =R <1 —201(1— 4m) + 5

. (ETARCEE)

+ %Rg ((21 + i(l + 2m0)(c? — 202)> . (A.8)

The normalization condition is obtained from the coefficient of Ry,
P1o —|—p01(1 + (4 + 27’]0)01) =1. (Ag)

The first O(a?) Symanzik condition requires the coefficient of Ry to vanish,
3 2.2
pio +po1 | 1 —2¢1(1 —4no) + 5(1 —10)°(c] —2¢2) | =0. (A.10)

It is interesting to see that the operator Ry is absent and hence the second O(a?)
Symanzik condition is satisfied automatically for the general ansatz considered
here. Reflecting the fact that when the FP action is expressed in terms of
simple loops some of them give a nonzero coefficient of R,, this is even more
astonishing.

A.2 Conditions from constant abelian gauge fields

For any solutions of the lattice equations of motion the value of the FP action
should coincide with the value of the continuum action on the corresponding
continuum solution. Since a constant abelian gauge field (F),, = const.) is a
solution in the continuum, it should also be a solution on the lattice. This
fact can be used to derive conditions which should be fulfilled by the FP action,
however, it provides a nice and convenient method for calculating conditions, e.g.
normalization or O(a*) conditions, for any lattice gauge action. In the following
we demonstrate the efficiency of the method by means of calculating the norm
and O(a*) Symanzik conditions. Note that the example is for a parametrization
where p1; = 0 for simplicity.

LFrom the non-linear parameters only the zeroth order coefficients contribute to the normal-
ization and the O(a?) Symanzik condition. To keep notation simple we substitute cgo) — ¢

in the rest of this section.



A.2. Conditions from constant abelian gauge fields 81

Let us first remark that the constant abelian gauge fields do not contribute to
the O(a?) Symanzik conditions since the corresponding dimension-6 operators
are identically zero for this case. The O(a') conditions obtained below are
therefore less important than the O(a?) conditions obtained in the previous
section and should be used in the fit only if they do not change significantly
other, maybe more important, properties of the FP action.

Nevertheless, the formulae are very useful for checking the programs, even
if the corresponding constraints are not implemented.

Consider now a lattice gauge potential on an infinite lattice given by

1
Uu(n) = exp <i503au,,n,,> , (A.11)
where a,, = —a,,. Then one has
SL”) (n) = 2cosay, Uy, (n), (A.12)
1
Q. (n) = -3 Z(l —cos ) Uy (n) (A.13)
AFu
and 5
Ty =3 Z(l — COS Q) )- (A.14)
AFp

With this one calculates n(z,) and ¢;(z,). Further one finds

QW (n) = AU, (n), (A.15)
where
1
Al(;/) =-3 Z (1 —cosaux) +n(z,) (1 —cosay)| . (A.16)

AApv

The asymmetrically smeared link is

W (n) = B U,(n), (A.17)
where
BY) =1+ ci(z,)AY) + ea(,) (AP + ... (A.18)
The smeared plaquette variable is
2
Wy = 2 {1 — coS (ij’)B,(f‘)) } , (A.19)

and the standard plaquette variable yields

Uy = 2(1 — cos ayy). (A.20)

Expanding in powers of a,, one obtains for the O(a?) terms?

A=V (pro+po1(1+ (44 2n0)c10)) (F, + afs +...) (A.21)
@)

i

2For simplicity of notation we set ¢;”’ — ¢;; for the rest of this section.
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which yields again the normalization condition eq. (A.9).
The value of the action should be purely quadratic in «a, hence the terms
proportional to a2,a3; and aj, should vanish. This gives two conditions,

9 3
po1 |3cio + Zc%o(l + 2n0) + 2¢11(2 + 10) + 5020(1 + 210)

— 12po2 [c10 + o (1 4+ 2m0)] =0, (A.22)

and

1
Pog — ﬁplo + po2 (1 +4ciono + 4030(1 + 77(%))

1
— b0 (14 2¢10(2 + Tno) + 3cT(2 + 3ng)
+8c11(2+m0) + 6c20(2 +15)) = 0. (A.23)

By expressing po; through the normalization condition eq. (A.9) one gets equiv-
alently

pQOZﬁ

1 3 3
+ gpou | 3eiono + 1030(2 +305) + 2c11(2 + m0) + 5020(2 +15)

— po2 [1+ 4eromo + 4cio(1+m5)] -
(A.24)

Equations (A.22) and (A.24) define e.g. pag and pp2 as a function of the non-
linear parameters 7; and ¢;”’ = ¢;;. Note that higher order coefficients do not
contribute to this order, and that p;q and pg; are assumed to be fixed from the
normalization and the O(a?) Symanzik conditions.



Appendix B

Instanton classical solutions
on the lattice

In this appendix we describe the construction and generation of instanton con-
figurations on the lattice and how they can be used in the determination of a
parametrized FP action.

FP actions are classically perfect lattice actions, which possess scale-invariant
instanton solutions down to a minimum size of around one lattice spacing.
The FP action value for these solutions coincides with the continuum value,
Agont AFP — | QFP|Acont - where QFF is the FP topological charge operator
on the lattice defined through the FP equation, eq. (2.4). For any other con-
figuration U the FP action will be larger than the corresponding continuum
one-instanton action A¥F(U) > |Q¥F (U)|Ajnst. Therefore FP actions are espe-
cially suited for lattice studies of topology, which are usually hampered by the
presence of large lattice artifacts, caused by so called dislocations [93, 94], i.e.
non-zero charged configurations whose contribution to the topological charge
comes entirely from small localized regions of O(a*). FP actions, however, al-
low a theoretically clean approach to topology on the lattice [2, 95, 96, 3, 97]
which has been applied successfully in SU(2) lattice gauge theory [11, 12, 13].

Y

Strictly speaking one-instanton solutions on a lattice with periodic boundary
conditions do not exist. This problem can in principle be circumvented by
either using twisted boundary conditions or one-instanton classical solutions on
open lattices [14]. However, despite of all this, approximate classical solutions
as constructed below can still be taken into account in the determination of
parametrized FP actions on the footing of normal configurations and they can
serve to check the flexibility of the present ansatz for the parametrization.

We will first review the construction of SU(2) one-instanton classical solu-
tions on the lattice and then report on some results and observations in the
context of generating these configurations.

83
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B.1 Construction of SU(2) single instanton con-
figurations

We begin with the known gauge potential for a single continuum SU(2) instanton
of size p centered at z = 0 in the smooth regular gauge:

2

xz
Au(z) = mgT(m)aug(m), (B.1)
with n
X 1X;0;
g(z) = 4T (B.2)

where 0,1 = 1,2, 3 are the Pauli matrices. This solution can be trivially shifted
to any center z.. As mentioned above, such a single instanton configuration
is not a solution of the classical equations of motion on a periodic volume.
Indeed, putting the solution on a periodic torus of size L one finds [11] that its
action diverges linearly due to the discontinuity of the field configuration on the
boundary x4 = +L/2, A(L) = Ainst + O(L). Following Pugh and Teper [94]
the problem can be alleviated by considering instead configurations made of an
instanton and a superimposed dislocation!. This is achieved by performing a
singular gauge transformation on the configuration given in (B.1) before putting
it on the lattice,

Vu(n) = g(m)Uu(n)g" (n + i), (B.3)
where g(z) is defined in equation (B.2) and U,,V,, are gauge link matrices on

the lattice. Following [11] the finite volume correction to the action of this
configuration is A(L) = Ajnst + O(1/L?) and we will use the ansatz

A(L) = Aings + a1 (%)3 +as (%)5 (B.4)

when studying the finite size behavior of the configurations.

In order to discretize the above configurations we define the link variables
on the lattice by approximating the path ordered exponential

n+fi
Uu(n) = Pexp z/ A, (x)dz (B.5)
through a product along the lines of the lattice,

Uum) =[] AUL(n.). (B.6)

where the factors
AU, (n,j) = exp (14,(z; = na + jAzi)Az) (B.7)

are evaluated for the interval [z; — Az/2, 2; + Az/2]. One typically breaks the
lattice spacing up into 20 equal intervals, Az = a/20, in order to achieve an
accurate evaluation of (B.5) for all cases of interest.

IThe dislocation can be interpreted as the remnant of a small anti-instanton that fell
through the lattice.
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A much nicer way is to use a closed expression of equation (B.5) obtained
by performing the path ordered integral analytically [98]:

Li0j

2 _ .2
Vot —x3

.T40; — €L T;0%

Us(z) = cos fa(x) —i sin f4(z), (B.8)

Ui(x) = cosfi(z)+i sin fi(z), 1=1,2,3, (B.9)
z? —1?
r? — 2
ful@) = |t P (B.10)
a—+xy, Ty

—— | —arctan | ————=
[ 2 2 2 ) 2 2
z: -z, +p z: -z, +p

With these expressions the instanton configurations can directly be put on the
lattice with z,/a = integer provided . is not a lattice site. In order to close the
boundary we perform a singular gauge transformation as mentioned previously,

X |arctan

V() = g(2)Uu(2)g" (z + i), (B.11)

where V,(z) is now as close as possible to the unity at the boundary.

B.2 Results and comments on SU(2) single in-
stanton configurations

We generated SU(2) single instanton configurations on a 12 lattice with the
instanton radius p/a ranging from 3.0 down to 1.1 centered in a hypercube,
z. = (5.5,5.5,5.5,5.5), in a cube, z. = (5.5,5.5,5.5,6), and in a plaquette,
Te (5.5,5.5,6,6), in the singular gauge following the construction as pre-
sented in the previous section. Then we blocked the configurations down to a
6 lattice, the instanton radii being halved, and then inverse blocked them back
to the fine lattice. The inverse blocking means that, keeping the coarse config-
uration fixed, one searches for a configuration which minimizes the r.h.s. of the
FP equation (2.4). The configurations are minimized until the action decrease
per sweep was less than 107¢ to 1078, As the starting fine configuration we
used the originally generated fine configuration.

It is interesting to investigate the minimization process more closely in order
to observe the falling through the lattice of the instantons. As expected it turns
out that the instanton solutions are relatively smooth configurations even on
the coarse lattice having u < 0.25 except for some plaquettes near the instanton
center. The fluctuations of these few plaquettes are growing when the instanton
radius p/a is decreased, i.e. when the instantons are more and more localized
objects, and they reach a maximum value between 1 < u < 2 at around p/a ~ 1.
This is exactly when the instanton falls through the lattice to possibly become
a dislocation.

This falling through is expressed in the minimization process through a jump
in the value of the blocking kernel, which is exactly zero for a classical solution
and non-zero for any other configuration. Figures B.1 shows the evolution of
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one-instanton classical solutions on a 124 lattice centered in a hypercube during
the minimization process. V is the fixed coarse configuration and U denotes
the minimized configuration on the fine lattice. The radius p of the instanton
configurations is in units of the coarse lattice spacing. Note, that A¥P(V) =
AFP(U) + T (U, V) and that for an exact classical solution of the FP action one
has T(U, V) = 0. The values of the action and the blocking kernel are in units of
the continuum action value 472, while the action decrease per sweep is rescaled
appropriately.

The first configuration with p/a = 0.90 is already close to a classical solution
right from the beginning and it converges to the final minimized configuration
very fast. Note that T'(U,V) is indeed zero up to finite volume corrections
O((p/L)?) from the boundaries.

The second configuration with p/a = 0.85 is still close to a classical solution
at the beginning, but slowly deviates from it during the minimization process.
After around 35 sweeps, a different more preferable minimizing configuration
is found, which is no longer a classical solution (T'(U,V) # 0). This is when
the instanton falls through the lattice and it is expected to be accompanied by
a drop of the FP topological charge QFF from Q¥F = 1 to QY = 0, thereby
preventing the configuration from being a dislocation.

The third configuration falls through the lattice after already 10 sweeps and
first converges towards a local minimum in the space of minimizing configura-
tions before finding the true, presumably global minimum.

These results are collected in figure 2.1 in section 2.5 on the example of con-
figurations centered in a hypercube. The falling through the lattice is clearly
visible from the jump in A(U) and T(U, V) and shows itself in the discontinuity
in A(V) at p/a ~ 0.88. Similar figures are obtained on configurations centered
in a cube and a plaquette, respectively.

As is clear from section 2.5 one has large degrees of freedom in parametrizing
a FP action, and indeed, we have several equally good parametrizations on the
intermediate level being appropriate for fluctuations involved in the instanton
configurations. It is interesting to see how the minimized configurations are
influenced by the choice of the action in the minimization procedure. It turns
out that minimized configurations differ significantly from each other: using
some parametrized FP action on a configuration previously minimized with a
different parametrized FP action can result in an action decrease during the first
sweep as high as 8 - 1072, however, the action value itself, A(U) + T(U,V) does
not differ more than 1.2% in the end. This is just an artifact of our inability
to parametrized the FP action accurately enough, but consolidates the expec-
tation that the choice of the action should not be crucial apart from fulfilling
some minimal requirements.

Having the final parametrization of the FP action at hand, it is interesting to
see how the action performs on generic instanton solutions. For this purpose we
generated several instanton configurations with varying radii p/a = 1.1,...,3.0
and on different lattices L = 8,10, ..., 18 according to the procedure described
above. These configurations are then blocked to a coarse lattice and evaluated
with the parametrized FP action given in table 2.1, and finally, the results are
extrapolated to infinite volume using formula (B.4). The results for instanton
configurations centered in a cube is shown in figure 2.2 in section 2.5 and com-
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pared to the results obtained with the Wilson action. Figure B.2 shows the
same for instanton configurations centered in a plaquette.
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Figure B.1: SU(2) single instanton solutions of different sizes on a 12* lattice
with center in a hypercube during the minimization process. The action decrease
is per sweep and is rescaled appropriately.
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Figure B.2: SU(2) single instanton solutions of different sizes centered inside
a plaquette. The solid lines are extrapolations to infinite lattice. For the
parametrized FP action we also plot the action values on the finite lattices
with size L = 4,6,8 as dashed lines.



Appendix C

The Ferrenberg-Swendsen
reweighting

In order to express quantities calculated on the lattice in physical units one
has to find the relation between the coupling of the theory and the lattice cut-
off a. This can, for instance, be achieved through a calculation of the critical
couplings f. for the phase transitions on lattices with given temporal extent N,.
However, the determination of the critical couplings is in general a delicate and
subtle matter and therefore having different methods of determining the critical
points of the theory at hand may be of great help.

The Ferrenberg-Swendsen reweighting [46, 45] is a method for optimizing the
analysis of data from single or multiple Monte Carlo (MC) computer simulations
over wide ranges of parameter values and which is based on ideas first proposed
by [43, 44]. The method is applicable to simulations in lattice gauge theories as
well as statistical mechanics. The method allows explicit error estimates, which
in turn provides a clear and simple guide for objective planning of the length of
additional runs and parameter values to be simulated.

In section C.1 we will first review the Ferrenberg-Swendsen reweighting tech-
nique in the single-histogram case. Then the method is extended in section C.2
to the case when data from several MC runs are combined. Throughout the
two sections, simulations of the two-dimensional Ising model will serve as eluci-
dating examples in the case of a second order phase transition. In section C.3
finally, the method is applied to the 10-state Potts model in two dimensions as
for illustration at a first order phase transition.

C.1 The single-histogram reweighting

All the information about a statistical system at a given temperature T = 1/
is contained in the partition function,

2(8) = 3 e P50 = ST W(S)e 5, (C.1)
{o} S

where {0} is the set of all configurations of the system, S is the energy for a
given configuration and W (.S) is the density of states at energy S or the spectral
density function.

90
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The Ferrenberg-Swendsen interpolation or spectral density method relies on
the fact that the density function is universal in the sense that it is the same at
every temperature and thus contains in principle all the information about the
system at any temperature or coupling 5. In practice we can estimate the spec-
tral density function only in some finite range of energies and we are therefore
limited to a finite range of couplings near the original simulation point. How-
ever, for couplings near criticality the probability distributions for the states
involved are very broad and thus there is a large overlap with typical config-
urations at different couplings. Therefore the method is most powerful in the
vicinity of criticality.

Consider now a simulation at coupling 8 with ng measurements. The value
S for the action appeared Ng(S) time, i.e. )4 N3(S) = ng. We can estimate
the probability to find a configuration with energy S:

W(S)e B3  Njs(9)

Ps(§) = =g~ = = (C.2)

The same holds true for another arbitrary coupling 3':

W(S)eh's
Ps(S)= ———. C.3
() = S (©3)
Dividing equations (C.2) and (C.3) we obtain
OERAC)
Ps/(S) = P3(S)e#=7)5 : C.4
() = Po(§) el #5200 (C.4)
The ratio of the two partition functions can be written as
Z()  _ ) W(s)e #'S
Z8) ~ 2 Z(
=y W(S)e™™ (s-ps
S AT
= ZPB S)e(
and together with equation (C.4) we arrive at
P5(S) eB-8)S
Py (8) = 25 (C.5)

> s Pa(S8) =093

We can now calculate an observable O at any other coupling 3’ from our simu-
lation at £,

(0) = ZO e=8'S( (C.6)

O(o) e P'S (C.7)

)75
= Z S)Ps (S (C.8)
S



92 Appendiz C. The Ferrenberg-Swendsen reweighting

where the effective value of the observable at action S reads

o Ty 88 = S(0)0(0) T O(0;)
o) = WS) ¥ TNG)

(C.9)

For illustration and for checking the implemented code let us look at the
specific heat of the Ising model in two dimensions, where the exact solution is
known [99]. In figure C.1 - C.3 the filled circles show the results of three MC
simulations near and at the infinite volume critical coupling 3. = In(1 + v/2) /2.
All three simulations used the Swendsen-Wang cluster algorithm [100] with 5000
sweeps for equilibration and 30000 measurements on a 16> lattice. The results
of the reweighting procedure are shown as open circles and compared to the
exact curve. Error bars are estimated using the bootstrap method. Even with
modest statistics we are able to reproduce the peak of the specific heat with
reasonable accuracy. Note that the peak is shifted away from 3. due to finite size
effects. To understand the deviations from the exact curve and the increasing
error estimates for -values away from the simulated point it is useful to look
at the energy histograms in figure C.4. The curve labeled with § = 3, is
the histogram from the simulation at the critical coupling and the other two
histograms at § = 0.375 and § = 0.475 are computed from the input histogram
by reweighting. For comparison we have included the histograms obtained from
the simulations at f = 0.375 and 8 = 0.475, indicated by the black dots. The
figure clearly shows that the simulation at . for example does not provide
enough information about configurations typically showing up in a simulation
at f = 0.375 and thus a reweighting from [, breaks down at around g = 0.4.
This breakdown is also responsible for the increase of the error estimates in the
reweighted curve of the specific heat in C.3 for g < 0.4.

To take full advantage of the histogram reweighting technique it is advisable
to combine the information from different simulations. In the next section we
will explain and illustrate how this can be achieved in an efficient way.

C.2 The multi-histogram reweighting

In the last section we showed how histograms can be used to increase the amount
of information obtained from a single computer simulation in the neighborhood
of a critical point. For more general problems, however, it is often necessary to
perform simulations at more than one parameter value. We will now describe
an optimized method proposed by Ferrenberg and Swendsen for combining the
data from an arbitrary number of simulations to obtain information over a
wider range of parameter values. Again the method is applicable to lattice
gauge theory, but for simplicity we will illustrate and test the procedure on the
2D Ising model and later on the g-state Potts model.

Let us start with recalling two simple equations from the single-histogram
case:

, (C.10)

Z(3) 5. (C.11)
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Figure C.1: The specific heat of the 2D Ising model computed by reweighting
(empty circles) from a single MC simulation at 3 = 0.375 (filled circle) on a 16>
lattice with 30000 measurements. The solid line indicates the exact result for

comparison.
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Figure C.2: The specific heat of the 2D Ising model computed by reweighting
(empty circles) from a single MC simulation at 3 = 0.475 (filled circle) on a 16>
lattice with 30000 measurements. The solid line indicates the exact result for

comparison.
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Figure C.3: The specific heat of the 2D Ising model computed by reweighting
(empty circles) from a single MC simulation at 8 = 3. (filled circle) on a 16>
lattice with 30000 measurements. The solid line indicates the exact result for
comparison .
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Figure C.4: The energy histogram at the simulation point 8 = ., and the ones
reweighted to 8 = 0.375 and 8 = 0.475. The black dots indicate the histograms
obtained in additional simulations at these temperatures.
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Suppose we have performed MC runs at K different S-values 8 = 1, 32, ..., Bk
of length nj, where we measured the frequencies Ny (S). For every run there is
a partition function Z(f)) which corresponds to the free energy fr = F(8x) of
the run:

F(Br) = —InZ(Bx). (C.12)

We can write down the (estimated) spectral density function (C.10) for each of
the K MC runs,

N (5)

Wi(S) = o Z(By) e’ (C.13)
/IC) ePrS—1Ir, (C.14)
ng

however, there should be only one unique function W(S). To get an improved
estimate for W (S) one takes a weighted average of the previously defined density
functions with the following ansatz:

K K
W(S) =Y pr(S)Wi(S) with > pi(S) = 1. (C.15)
k=1 k=1

Ferrenberg and Swendsen proposed to choose the weights such that the error
in the resultant estimate for W (S) is minimized, assuming that the errors on
the relative frequencies Ny(S)/ng is gx/nr = (1 + 27%)/ng, with 7 being the
integrated autocorrelation time. With this condition one gets

ng o~ Bi S+
pr(S) = —& C.16
k( ) Zl}il %6—515-4-.)% ( )
and
K N (S
W(S) A=l g (C.17)

K me-BiSth
=L g

One can now calculate the partition function at an arbitrary §-value,

Z(B) =Y W(S)e "5, (C.18)
s
and from this the corresponding free energies
=—InZ , C.19
fi B),_,. (C.19)

which have to be regarded as implicit conditions for each of the fi’s. We now
give up the original definition, that fj is the free energy of the particular MC run
at By, but instead assume them to be free parameters, using equations (C.18)
and (C.19) iteratively to find a self-consistent solution. Efficient convergence is
obtained by using the derivatives of the new values of f; as functions of the old
values in the iteration process.

The expectation value of any observable can be calculated at some arbitrary
coupling ' using the formula

Oy = 5

7 > OS)W(S)e 7. (C.20)
S
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In practise all the formulas are expressed in terms of action differences and
(B-value shifts in order to deal with numerically stable quantities.

For illustration we again resort to the 2D Ising model and calculate the
reweighted specific heat from the two simulations at 8 = 0.375 and § = 0.475.
The impressive result is displayed in figure C.5. One sees that the error es-
timates are small over the whole range of J-values considered indicating that
the reweighted curve is calculated accurately enough to determine the critical
coupling very precisely. Indeed, the reweighted curve coincides with the exact
result within less than one standard deviation.

2 T
exact solution

o reweighted from simulation at f=0.375 and =0.475
® simulation at $=0.375 and 3=0.475

specific heat

B=0.475

0.5 0.6

Figure C.5: The specific heat of the 2D Ising model computed by reweighting
(empty circles) from two MC simulations at 8 = 0.375 and § = 0.475 (filled
circles) on a 162 lattice with 30000 measurements each. The solid line indicates
the exact result for comparison.

C.3 Reweighting at first order phase transitions

The mechanism of the reweighting procedure relies on the fact that the distribu-
tion of configurations at a given -value overlaps with the distribution at another
B-value. As emphasized in the previous sections this feature is even enhanced
near the criticality of a second order phase transition, where the probability
distributions for the states involved are very broad. Reflecting the fact that
at a first order phase transition, the energy probability distributions shows a
double peak structure (cf. figure 3.3) it is not obvious from the beginning if the
proposed method is as powerful as for a second order phase transition. Indeed,
by simulating at a temperature slightly below or above the critical temperature,
we are collecting information about configurations in one or the other phase only
and it is merely exactly at the critical point where we encounter coexistence of



C.3. Reweighting at first order phase transitions 97

the two distinct phases and thus have access to information on both phases.

As it turns out the difficulties are relieved due to the fact that one has to
work on finite volumes, where the sharp first order phase transition is rounded
off. In fact, near the critical temperature the system will jump from one phase to
the other from time to time, thence yielding information about the probability
distributions of configurations in both phases. As a testing ground for this
claim we have to resort to a statistical system which is easy to simulate and
which exhibits a first order phase transition. Such a model is provided by a
generalization of the Ising model in two dimensions, the g-state Potts model
[101]. The model is defined through the Hamiltonian

Hpotts = _62501'0]': ogiel, .. q, (021)
(i7)

where ZW) denotes the sum over all nearest neighbors, and where we recover
the Ising model by setting ¢ = 2. In two dimensions the system is exactly known
to exhibit a second order phase transition for ¢ < 4 and a first order transition
for all ¢ > 5 [102]'. Since the first order phase transition is known to be weak

for small ¢, we choose ¢ = 10 in our study.
Let us first look at the energy probability distribution of the system. In
figure C.6 we display the energy distribution of a simulation at 8 = 1.405
near the finite volume critical coupling. The other two histograms are the
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Figure C.6: The energy histogram at the simulation point § = 1.405 near the
critical coupling and the ones reweighted to § = 1.375 and § = 1.425. The
black dots indicate the histograms obtained in additional simulations at these
temperatures.

energy distributions obtained by reweighting to § = 1.375 and g = 1.425, while

!In three dimensions the model enjoys a first order phase transition for all g > 3.
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the black dots show the results of the corresponding additional simulations for
comparison. In all simulations we use the Metropolis update algorithm on a 122
lattice with 10* sweeps for equilibration and 10* measurements on 10 sweeps.
The quantitative coincidence of the reweighted distributions with the simulated
ones is very convincing even in the tails of the distributions.

As a final check let us look at the magnetic susceptibility of the system.
As opposed to the Ising model in two dimensions no exact solution is known
for th ¢-state Potts model. Therefore we compare the result obtained from
the reweighting to additional simulations near the estimated critical tempera-
ture?. In figure C.7 the filled circles denote the results of two MC simulations
at f# = 1.375 and § = 1.425 and the solid line shows the results obtained by
reweighting the data from the two simulations. Error bars and bands are cal-
culated using a bootstrap procedure. The empty circles show the results of
additional simulations at several couplings around the critical value. For clarity
the region around the peak is enlarged in figure C.8, where we also include the
curve obtained by reweighting the data from the additional simulations. As
in the Ising model the susceptibility peak can be reproduced with an amazing
accuracy. Indeed, if we determine the critical coupling as the location of the
susceptibility peak we obtain 8. = 1.4051(11) from the simulations at 5 = 1.375
and § = 1.425 and . = 1.4050(4) from the additional simulations.

14 + 4

1.35 1.375 14 1.425 1.45
B

Figure C.7: The magnetic susceptibility of the 2D 10-state Potts model on a 122
lattice. The reweighted curve (solid line) is computed from MC simulations § =
1.375 and § = 1.425 (filled circle) and compared to additional MC simulations
(empty circles).

2 Although the critical coupling for the g-state Potts model is known exactly in the ther-
modynamic limit, 8. = In(1+,/q), we can not rely on this value due to the considerable finite
volume shift.
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Figure C.8: Enlargement of the region around the magnetic susceptibility peak
in figure C.7. The additional solid line is the reweighted curve computed from
the MC simulations displayed as empty circles.



Appendix D

Extracting masses from
correlation functions

It is well known that energies of particles and gauge strings can be extracted
from correlation functions of operators having appropriate quantum numbers.
Here we are concerned in particular with the extraction of particle and string
masses, thence it suffices to consider correlation functions with zero momentum
only and we suppress the momentum dependence in the following. In Euclidean
space with a lattice periodic in time T" we have

(0[OHO1(0)[0) = C(t) = Zne™ Pt (D.1)

for Wilson loop correlators and

c) =Y 2, (e—Ent + e—En<T—f>) (D.2)

for glueballs and mesons'. The energy spectrum can in principle be extracted
from the correlation functions. In particular, only the lightest state survives at
large times,

. e~ Fot Wilson loops,
lzlagggtc(t) ~ { e~ Pot 4 e=Fo(T=1)  megons, glueballs, (D.3)

and thus the ground state energy can be determined from the exponential decay
of the correlation function at large times.

The primary difficulty in this stage is one of reliably identifying the regions
of time slices where the correlator takes the asymptotic form in equation (D.3),
i.e. identifying the plateau region. For finite values of ¢ we always have excited
state contributions and therefore it is of crucial importance to have an operator
with large overlap to the ground state. For this purpose different operators
O, having the same quantum numbers are measured and a linear combination
is constructed in order to disentangle the ground state contribution from the

IThis relation only holds for particles with integer spin and is slightly modified for spin-
1/2 particles like baryons, where forwardly and backwardly propagating particles have to be
distinguished.
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excited state contributions. To determine the appropriate linear combination
we invoke variational techniques which are described in detail in the first section
of this appendix.

Once the excited state contributions are unraveled from the ground state a
plateau region is identified and one can extract the ground state mass by either
calculating the effective mass,

(D.4)

men(®) =~ [ SED]

C(?)

in the plateau region or fitting the ground state correlation function C(¢) to an
ansatz of the form given in equation (D.1) or (D.2). This issue is given further
consideration in the second section of this appendix.

D.1 Variational techniques

In a simulation we estimate the elements of the N x N correlation matrix using
the Monte Carlo (MC) method,

Cas(t) = (0]0a ()0 (0)]0), (D.5)

where the rank N of the matrix depends on the number of smearing schemes
and the number of operators under consideration. The coefficients v, in the
linear combination 25:1 va Oy with the largest overlap to the ground state are

determined by minimizing the effective mass?,

m(to,tl) =—In [%} /(tl — tO). (D6)

This is equivalent to solving a generalized eigenvalue equation,
C(ty)v = e PH=10) (40w, (D.7)

which is well defined only for positive definite C'(¢p). In general, however, pos-
itiveness of C(tg) is not automatically fulfilled for ¢, > 1, but can be achieved
in the following way.

We first diagonalize C(t),

C(to)pi = Xivi, A1 >...> AN, (D.8)

and project the correlation matrices to the space of eigenvectors corresponding
to the M highest eigenvalues,

Ci (1) = (¢i, C(D)g;), i,i=1,...,M. (D.9)

By choosing the operator space too large we introduce numerical instabilities
caused by very small (even negative) eigenvalues with large statistical errors
due to the fact that the chosen operator basis is not independent on the given
MC sample. By choosing M appropriately we can get rid of those unphysical

2In the following we use matrix notation for C,ps(t) and suppress the indices whenever it
is appropriate.
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modes while still keeping all the physical information. In this way we render
the generalized eigenvalue problem well defined.

Of course the final result should not depend on the choice of M and one has
to take care in each case that this is really so. Our observation is that for any
acceptable statistics one always finds a plateau in M for which the extracted
masses are stable under variation of M.

Note that the above procedure is not necessary for the choice ¢ty = 0 since
C(to = 0) is positive definite by definition. However, determining the operator
basis from C(ty = 0) and C(t; = 1) in eq. (D.7) is under suspicion of containing
little physical information about the correlation lengths, since C'(tg = 0) actually
just describes the relative normalization of the operators. This is the reason for
choosing tg = 1,#; = 2 in our analysis whenever it is possible®.

In a next step we determine the vectors v,,n = 1,..., M through the gen-
eralized eigenvalue equation (the index o =1,..., M is suppressed)
CM(ty)v, = e Eni=t)OM (30)0), . By < ... < Ey, (D.10)

and project the correlation matrices C () again to the eigenspace correspond-
ing to the K < M highest eigenvalues, i.e. the K < M lowest energies,

CE() = (v, CM(tpy), ij=1,....K < M, (D.11)

for the data-fitting phase. The truncated correlation matrices Cg(t) are fitted
in the range t = tmin - - - tmax using the ansatz

K’
Cij(t; {sh,m}) = Z Pnithy e Wilson loops  (D.12)
n=1

for the Wilson loop correlators and

K!
Cij(t{,m}) =) hpithy; (e + 7™ (T=0)  glueballs (D.13)

n=1

for the glueball correlators. In both formulas, v,,; = (C¥(ty)v,); and K' # K
in general.

For all practical purposes we choose K’ = K = 1 to obtain an energy
estimate of the lowest-lying state and K’ = K = 2 for an energy estimate of
the first-excited state and an additional estimate of the ground-state energy.
Increasing K' = K allows to check for the stability of the energy estimate of the
lowest-lying state. In the glueball analysis we choose K' = K = 2 or 3 for the
AT -channel where we also fit the vacuum energy and its wave function since
we do not subtract the vacuum contribution ((’)Q((’)L) from the correlators, cf.
remarks in section 5.4.

D.2 Correlated fits

The standard way to fit a functional form to a set of data is to minimize a
measure of the goodness of the fit as a function of the fit parameters such as

31t is prevented only by badly measured operators due to insufficient statistics.
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{¢,m} given above. If this procedure is to be a meaningful test of the fitting
function, such a measure must take into account all kind of correlations in the
data C;;(t) between different operators at different time slices. In all our fits we
use the correlated x2-function where the correlation between the data points is
accounted for with the covariance matrix (Cov),

X {nisma}) = D0 (i) = Cos(t: {5, m)))

ijkl tt'
(Cov)izhaan (Cual®) = Cult's {p.m})), (D.14)

where the sum 3., is over i > j and k > [ only and },, is meant as a
sum over the fitting range ¢,' = tmin - - - tmax- The (symmetric) data covariance
matrix is defined as

1 N
(Cov)jppur = NN-D > (Ci(f) (t) = (Cij (t)>) (Clgf) (') —{Ch (t')>) :
k=1
(D.15)
Here the sum is over N configurations or bins, C’i(f) (t) denotes the value of the
correlation matrix element 4,5 at time slice ¢ from configuration or bin k& and
(Cyii(t)y = 1/N chvzl Cl.(;c) (t). To prevent the covariance matrix from getting
too large it is calculated only in the last step of the analysis, i.e. when the full
correlation matrix is truncated down to the small K x K matrix C¥ (¢) and the
fitting range tmin - - - tmax 1S specified. The smallness of the covariance matrix
is even more important regarding the fact that the number N of configurations
or bins must be at least as large as the number of columns of the covariance
matrix since otherwise it contains repeated columns and is rendered singular.
For linear statistics 6 it is easy to show that the covariance matrix can be
calculated directly from the Jackknife samples, say #*), through the formula

N-1g
(Cov)ij = == D6 =66} — ), (D.16)
k=1

where 61 = 1/N DO 6*) is the average of the Jackknife samples. For non-
linear statistics, however, the relation no longer holds true but the r.h.s. can
still be used as an estimate for the elements of the covariance matrix. Equation
(D.16) turns out to be most convenient for the analysis of the glueball correlation
matrices where we are dealing with a large number of operators and therefore
working with Jackknife instead of Bootstrap samples due to memory and speed

limitations.



Appendix E

The cubic point group Oy,

On a cubic lattice the rotation symmetry is broken down to the symmetry group
of a cube, the cubic (or octahedral) group O consisting of 24 discrete rotations.
In addition to the transformations of the cubic group we consider the discrete
symmetry of total spatial inversion of which the eigenvalues are denoted by
parity P = +1. Combining these transformations we obtain the cubic point
group Op = O X Zs containing 48 group elements.

E.1 The group elements of Oy

The notation for the rotations follows [103], E denoting the unity element, Cp;
denoting a proper rotation through 27 /n in the right-hand screw sense about
the axis O; and I denoting the spatial inversion operator. All the axes involved
are indicated in figure E.1.

L

P €

1 N

IR

| :

I i

oy
g N i B

e f

Figure E.1: The rotation axes Oa, Ob, Oc, Od, Oe, O f, Oz, Oy, Oz, 0Oa, 08,0y
and O4.

An element T' of a group G is said to be conjugate to another element T' of
G if there exists an element X of G such that

T' = XTX . (E.1)
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A set of mutually conjugate elements of G is called a conjugacy class. A class
can be constructed from any TeG by forming the set of products XTX ~! for
each Xe@G, keeping only the distinct elements. It is clear that, for example, the
identity F forms a class by its own.

In the following the elements of the cubic point group are listed in conjugacy
classes:

€ = {E}a

Co {Cs0,Cs5,C34}, Css,Cayt , O, O, Ot 3,
CS {0210; CQy; CQz}a

Ca {Caz,Cuy, Cuaz, Ot C ) O,

Cs = {C,Co%,C5,C2a,Cs¢,Car},

Ce = {I}, (E.2)
Cr = {ICs34,1C33,1Cs3,,1Cs5,1Cs,), IC,45, 1Cs. !, 1C'},
Cs = {IC;,1Cs,,10s.},

Co = {IC4,,ICyy, ICs.,ICE ICT  IC'Y,
ClO = {ICQG,:ICQINIOQC:ICQd7[OQEaIOQf}-

Of special interest in the context of irreducible representations are the fol-
lowing theorems :

Theorem 1 For a finite group G the number of inequivalent irreducible repre-
sentations is equal to the number of classes of G.

Theorem 2 For a finite group G, the sum of squares of the dimensions of the
inequivalent irreducible representations is equal to the order of G.

Taking together both theorems, it is sufficient in the case of the cubic point
group Oy to specify the dimensions of the inequivalent irreducible representa-
tions. From Theorem 1 it follows that there are five inequivalent irreducible
representations for the cubic group, I'’,p = 1,...5, and ten for the cubic point
group, respectively. In the case of the cubic group Theorem 2 amounts to the
equation

5
> dk =24, (E.3)
p=1

where d,, denotes the dimension of the corresponding irreducible representation
I'?. The equation has a unique solution given by {n; = na = 1,n3 = 2,n4 =
ns = 3} and thereby yielding a unique specification of the dimensions of the
irreducible representations of the cubic group. The solution is trivially extended
to the cubic point group since the additional irreducible representations are
connected to the ones of the cubic group by the parity transformation.

In the following one-dimensional representations are denoted by A, two-
dimensional irreducible representations by E and three-dimensional irreducible
representations by 7' with superscripts + indicating representations that are
even and odd under the parity transformation I, respectively.
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E.2 The character table

The characters are a set of quantities which are the same for all equivalent repre-
sentations. For finite groups (and compact Lie groups) they uniquely determine
the representations up to equivalence, in particular they provide a complete
specification of the irreducible representations that appear in a reducible repre-
sentation T

The number of times n, that an irreducible representation I'? appears in a
reducible representation T,

F:nlfl@ngf2@..., (E4)

is given for a finite group G by

ny = = S XTN(T), (E5)
9 TeG

where x(T) and x?(T') are the characters of I' and T'?, respectively, and g is the
order of the group G. Note that for matrix representations the character of a
group element, x(T'), is simply given by the trace of the corresponding matrix
representative and that the character is the same for all elements in a given
conjugacy class.

In table E.2 we list for each irreducible representation I'!,..., 10 of the

cubic point group the characters of the conjugacy classes Cy, ..., Cip.
Ci C C3 Cy C5 Cg C; C3 Cog Cio

{41 1 1 1 1 1 1 1 1 1

™ |47 |1 1 1 -1 -1 1 1 1 -1 -1

[ Et 2 -1 2 0 0 2 -1 2 0 0
r|rt{3 o -1 1 -1 3 0 -1 1 -1

r |\t 3 0 -1 -1 1 3 0 -1 -1 1

I AT 1 1 1 1 1 -1 -1 -1 -1 -1
oAy 1 11 1 -1 1 1 1 1 1

s |e- |2 -1 2 0 0 -2 1 -2 0 0
|| 3 o -1 1 -1 -3 0 1 -1 1

rto T, 3 0o -1 -1 1 -3 0 1 1 -1

Table E.1: Character table for the cubic point group.

E.3 Wave functions of glueball operators

In this section we list the orthogonal wave functions of the irreducible operators
which can be built from some of the Wilson loop shapes up to length eight. The
loop shape numbers correspond to the ones in figure 5.1. Each row corresponds
to a given orientation of the loop shape under consideration. Notation is fixed
through ordering the orientations in the following way. We construct a loop
shape prototype with the path first going in 1-, then in 2- and finally, if necessary,
in 3-direction as displayed in figure 5.1. From this reference orientation all others
are generated by applying the group elements in the order as given in (E.2). Care
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has to be taken not to generate orientations equivalent up to translations. The
numbers in each row denote the contribution of the specific orientation to the
wave function in question. Suitable normalization factors are understood and,
according to C-parity C' = £1, the real or imaginary part has to be taken.

Consider now an example explicitly and take a look at the single plaquette
operator (loop shape #1). The three (positive) orientations of the single pla-
quette can be labeled as 015, 013 and Os3. The first ET+ wave function is then
constructed as OF"" = 2015 — 013 — Oa3.

The two and three wave functions in the E- and T-channels, respectively, are
degenerate states having the same quantum numbers and can thus be regarded
as different ” polarizations” belonging to the same ”spin state” and transforming
among each other under the cubic point group. The freedom in the choice of
the orthogonal basis functions can be used to construct basis functions which
are simultaneous eigenfunctions of mutually commuting group elements.

Thus for the irreducible representations of dimension greater than one (E, T
and T5) we have chosen a basis of wave functions which are simultaneous eigen-
functions under the group elements Cs,, Csy, Cs. and their parity transformed
partners. In the E-channel the wave functions are in addition eigenfunctions
under Cy., C’;;, Cs4, Cyp and the corresponding parity transformed group ele-
ments.

In the following tables on page 107 — 113 we list the orthogonal wave func-
tions of the irreducible operators which can be built from Wilson loops up to
length eight. Note that the expressions for loop shape #8, 9, 11, 18, 20 and 22
are too lengthy and can thus not be displayed.

loop shape #1

ATT 1 1 1
E++ 2 -1 -1
0 1 -1
TF 0 0 1
0 1 0
1 0 0

loop shape #2
AFT 1 1 1 1 1 1
ATT 1 1 1 -1 -1 -1
E+t 2 -1 -1 -1 -1 2
0 1 -1 1 -1 0
E+ 0 1 -1 -1 1 0
-2 1 1 -1 -1 2
T, 0 0 1 0 1 0
0 1 0 1 0 0
1 0 0 0 0 1
Ty~ 1 0 0 0 0 -1
0 0 1 0 -1 0
0 -1 0 1 0 0
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loop shape #3

FF
Al

E++

1

0

-1

-1

T+ 0

-1

-1

-1

2

T.

-1

loop shape #4

=
Al

loop shape #5

= - — O O
[

— o= O~ C
|

— AN O OO -

FF

Aj

E++
+7
1
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loop shape #6

TF
Al

E+T+

-1

T+ 0

-1

-1

2

T.

-1
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loop shape #7

A++

1

Ett 2

-1

T++

2

-1

T, " 0

-1

-1

1
0

AF~

-1

E+-

loop shape #10

ATT
A++
E++

E++

T
TS~
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loop shape #12

=
Al

T+ 0

-1

++
T2

loop shape #13

F
Al

Et+T+
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loop shape #14

ATT
E++

-1

T+ 0

T++

2

-1

T, 0

-1

loop shape #15

= - — O O
[

— o= - O~ C
1

— ANO oo -

F

Al

E++
+7
1

loop shape #16

ATT
ATt
E++

E++
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loop shape #17

=
Al

E++

ot

loop shape #19

TF
Al

Et+T+

++

+—
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loop shape #21

TF
Al

E+T+

T+ 0

-1




Appendix F

Collection of data

F.1 Data from the static potential

B fit range Vo a o x2/Npr
3400 2-6  0.7805(7)  -0.251(9) 0.0629(13)  1.02
3150  2-5  0.820(15) -0.286(19) 0.0992(27)  0.75
3150 2-6  0.804(14) -0.264(17) 0.1017(25)  1.03
2927 2-6  0812(16) -0.272(20) 0.1606(33)  1.35
2860 1-4  0.8007(48) -0.2623(33) 0.1885(17)  1.17
2860 2-4  0.789(38) -0.201(43) 0.1844(72)  1.41
2680 1-4  0.7766(52) -0.2547(37) 0.2871(15)  0.43
2680 2-6  0.778(41) -0.256(54) 0.2868(70)  0.65
2361 1-4  0.615(11) -0.1791(78) 0.6286(37)  0.99
2361  2-5  059(11)  -0.15(13)  0.634(22)  1.41

Table F.1: Results from correlated fits of the form (4.4) to the static quark
potentials. The second column indicates the fit range in r and the last two
columns the value of ¢ from which ry is determined through (4.5) and x? per
degree of freedom, x?/Npr, respectively.
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B r N, fitrange V(r) x2/Npr
3.400 1 ) 2-6 0.5874(2) 0.76
2 5  2-6 0.7804(5)  2.19
3 5  3-6 08852 127
4 3 3-6 09693)  1.24
5 4 2-6  1.046(4) 091
6 4 2-5 1116(8) 038
7 3 3.6 117(2) 0.18
3.150 1 ) 3-5 0.6405(3) 0.77
2 4 2-6 08756(5) 0.63
3 5 2-6  1.022(2) 043
4 3 2.5  1.147(2) 015
5 3 2-6  1.258(3) 0.4
6 3 2-6 1381 1.08
2927 1 4 2-7 0.7032(2) 0.42
2 3 2-7 09969(5) 0.65
3 3 2-7  1202(2) 056
4 4 2.5 13835 031
5 3 2-7  1560(8) 081
6 3 2-5 1712 0.82
7 2 2.6 1.92(3) 1.28
5860 1 3 2-4  0.7267(d) 1.0
9 3 1-4  1047(1) 0.6
3 4 1-4  1278(2)  0.68
4 2 2-4  1488(5)  0.30
5 3 2-4  167(2) 0.68
26%0 1 4 2-6 08091(3) 0.2l
2 4 2.6  1.2231(9) 0.8
3 4 2-6 1553(3) 033
4 3 1-5 18623) 033
5 2 2.6 215(3) 0.89
6 2 2-5 2518 0.14
5361 1 3 2-5  1.0641(6) 0.33
2 3 1-6 1783(1) 031
3 2 1-5 2443(4) 075
4 2 1-6  3.0902) 0.84
5 1 1-5  3.73(6) 2.31
6 1  1-6  4.5(3) 0.44

Table F.2: Potential values extracted from fits of the form Z(r) exp(—tV (r)) to
the ground state of the Wilson loop correlators. Note that tg = 1 and ¢; = 2
was chosen in all cases. The column entitled with N,, denotes the number of
operators kept after the first truncation.
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F.2 Data from the glueball simulations

Channel tq/t; Nop fit range x*/Npr energies

AFT 1/2 6 1-4 0.79  0.836(23)
0/1 30 1-4 0.54  0.835(20)
Ett /2 11 1-4 0.03  1.233(48)
8 1-4 0.19  1.271(34)
0/1 60 1-4 0.02  1.232(23)
T /2 5 1-4 040  1.234(28)
7 1-4 0.16  1.202(31)
0/1 48 1-4 1.16  1.247(21)
AT /2 3 1-3 024  1.395(86)
0/1 15 1-3 0.12  1.458(52)
15 2-4 0.10  1.38(20)
E~t /2 3 1-3 0.34  1.681(72)
Ty /2 4 1-3 0.09  1.631(72)
T /2 8 1-3 2.49  1.64(16)
6 1-3 0.17  1.76(10)
0/1 25 1-3 0.07  1.654(55)

Table F.3: Results from fits to the 3 = 3.40 glueball correlators on the 14*
lattice obtained from the large simulation.

Channel tq/t; Nop fit range x>/Npr energies
AFT /2 5 1-3 0.50  0.831(33)
2/3 3 1-3 0.50 0.839(32)
0/1 7 1-3 0.94 0.813(27)

Table F.4: Results from fits to the 3 = 3.40 glueball correlators on the 14*
lattice obtained from the small simulation where only five loop shapes were
measured on five smearing schemes.
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Channel tg/t; N,, fit range x?/Npr energies
AFT /2 5 0.61  1.034(33)
0.00  1.10(10)
2.02  1.032(32)
1.07  1.12(11)

1-3
2-3
1-4
2-4
0/1 25 1-4 1.62  1.017(28)
2-4 0.02  1.119(92)
Et+ /2 4 1-3 1.26  1.534(62)
0/1 48 1-3 1.41  1.455(45)
T 1/2 4 1-3 0.68  1.609(55)
0/1 48 2-4 1.32  1.83(23)
AT 1/2 3 1-3 0.84  1.65(18)
E—+ /2 3 1-3 0.00  1.97(20)
0/1 15 1-3 0.09  2.06(16)
Tyt 1/2 5 1-3 0.00  1.39(27)
0/1 22 1-3 0.00  1.92(11)
T 1/2 4 1-3 2,70 2.10(18)
0/1 25 1-3 0.05  2.04(12)

Table F.5: Results from fits to the 3 = 3.15 glueball correlators on the 12*
lattice.

Channel tg/t; N,, fit range x?/Npr energies
AT /2 3 1-4 0.02  1.411(96)
2-4 0.02 1.40(38)
0/1 25 1-4 0.56 1.378(80)
2-4 0.36 1.50(40)

Table F.6: Results from fits to the 3 = 2.86 glueball correlator on the 10%
lattice. Only five loop shapes were measured on 5 different smearing schemes.
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